观点融合视角下改进SIR的舆情信息传播模型与仿真研究  

Research on model and simulation of public opinion information dissemination based on improved SIR from perspective of opinion fusion

在线阅读下载全文

作  者:方丹辉[1] 郭亚东 吴萍 张婉婷 FANG Danhui;GUO Yadong;WU Ping;ZHANG Wanting(School of Safety Science and Emergency Management,Wuhan University of Technology,Wuhan Hubei 430070,China;Media Center of Wuhan Ecology and Environment Bureau,Wuhan Hubei 430022,China)

机构地区:[1]武汉理工大学安全科学与应急管理学院,湖北武汉430070 [2]武汉市生态环境宣教中心,湖北武汉430022

出  处:《中国安全生产科学技术》2024年第12期50-56,共7页Journal of Safety Science and Technology

基  金:国家社会科学基金项目(23BGL280);湖北省生态环境厅环保科研项目(HBXLD-202408-FW048)。

摘  要:为解决因推荐算法影响导致社交信息平台上用户接收信息面单一、容易产生回声室效应及群体极化的问题,通过结合观点融合模型和回声室效应理论,提出1种融合HK(hegselmann-krause,HK)模型和SIR(susceptible infected recovered model,SIR)模型的舆情信息传播模型,并在无标度网络上进行仿真。研究结果表明:当用户接收信息面过窄,相似的信息会聚集在一起,信息会同质化,产生回声室现象,导致舆情持续的时间变长;回声室存在时间越短,用户脱离舆情的速度就越快,舆情持续时间会缩短。研究结果可为政府、媒体等主体对网络舆情传播的引导提供参考。To address the problem of users receiving a narrow range of information on social media platforms due to the influence of recommendation algorithms,which can lead to the echo chamber effect and group polarization,by integrating the opinion fusion model and echo chamber effect theory,a public opinion information dissemination model combining the HK(hegselmann-krause)model and the SIR(susceptible infected recovered)model was proposed,and thesimulation was conducted on a scale-free network.The results show that when the users receive a narrow range of information,similar information tends to cluster together,leading to the information homogenization and the emergence of echo chamber phenomenon,resulting in a prolonged duration of public opinion.The shorter the existence of echo chamber,the faster the users disengage from public opinion,thereby shortening its duration.The research results can provide reference for the guidance of government,media,and other stakeholders on the dissemination of public opinion on the internet.

关 键 词:舆情信息传播 回声室 观点融合模型 传染病模型 

分 类 号:X913.2[环境科学与工程—安全科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象