检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王华树 刘世界 Wang Huashu;Liu Shijie
机构地区:[1]北京外国语大学,北京市100089 [2]上海海事大学
出 处:《外语与翻译》2024年第4期13-19,I0001,共8页Foreign Languages and Translation
基 金:国家留学基金委员会2024年国家建设高水平大学公派研究生项目的阶段性成果,项目号:202408310292。
摘 要:大语言模型凭借其在多语言处理、上下文理解、语义分析等方面的卓越能力,显著提升了翻译效率和质量。然而,这些技术的广泛应用也对译者的主体性带来了前所未有的挑战。本文深入探讨大语言模型对译者主体性的多维度冲击,包括语言敏感度降低、译者决策权被转移、创造性被削弱、责任边界被模糊、自身价值被低估,以及职业认同感受挫。针对这些冲击,本文提出重新定位译者角色、加强技能升级以及强化伦理意识的化解策略,旨在帮助译者在技术变革的背景下保持并强化其主体性,确保其在翻译实践中的核心地位。本研究深化对生成式人工智能时代译者角色的理解,为促进人智协同,实现翻译质量与效率的双重提升提供了新的思路。Large Language Models(LLMs)have significantly enhanced translation efficiency and quality through their exceptional capabilities in multilingual processing,contextual understanding,and semantic analysis.However,the widespread application of these technologies poses unprecedented challenges to translators'subjectivity.This study examines the multidimensional impact of LLMs on translators subjectivity,including reduced linguistic sensitivity,shift in decision-making authority,diminished creativity,blurred boundaries of responsibility,undervaluation of translators,and compromised professional identity.To address these challenges,this paper proposes strategies for repositioning translator roles,enhancing skill development,and strengthening ethical awareness.These strategies aim to assist translators in maintaining and reinforcing their subjectivity within the context of technological transformation,ensuring their central position in translation practice.This research not only deepens our understanding of translator roles in the era of Generative Artificial Intelligence(GenAI),but also provides new insights into promoting human-AI collaboration and achieving dual improvements in translation quality and efficiency。
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15