检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曾嘉慧 田晓琼[1] 刘超毅 ZENG Jiahui;TIAN Xiaoqiong;LIU Chaoyi(Hunan Cancer Hospital,Changsha 410013,China)
出 处:《现代信息科技》2024年第24期44-48,53,共6页Modern Information Technology
基 金:湖南省自然科学基金资助项目(2024JJ8206)。
摘 要:正确识别用户意图有助于提高医疗搜索的准确性,为医疗搜索系统的使用者提供便利。为了提高医疗搜索的意图识别准确率,文章利用中文医疗信息处理评测基准中的医疗搜索检索词意图分类数据集,对LERT预训练模型(Chinese-LERT-base)和BERT预训练模型(BERT-base-Chinese)进行了微调,并对微调后模型的意图分类准确率进行了评估。微调后的LERT模型在“治疗方案”“疾病表述”和“病因分析”类别的分类准确率较微调后的BERT模型分别提高了4.53%、8%和8.34%,在“其他”类别的分类准确率降低了9.45%,总体分类准确率提高了0.22%。Correct identification of user intention can help improve the accuracy of medical search and provide convenience for users of medical search systems.In order to improve the accuracy of intention recognition in medical search,this paper uses the KUAKE-Query Intent Criterion dataset in the Chinese Biomedical Language Understanding Evaluation to fine-tune the LERT pre-trained model(Chinese-LERT-base)and the BERT pre-trained model(BERT-base-Chinese),and evaluates the intention classification accuracy of the fine-tuned model.The classification accuracy of the fine-tuned LERT model in the“treatment plan”“disease description”and“etiological analysis”categories is improved by 4.53%,8%,and 8.34%,respectively,compared with the BERT model after fine-tuning,and the classification accuracy in the“other”category is reduced by 9.45%.The overall classification accuracy is improved by 0.22%.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38