检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曾安[1] 庞耀幸 潘丹 赵靖亮 Zeng An;Pang Yao-xing;Pan Dan;Zhao Jing-liang(School of Computer Science and Technology,Guangdong University of Technology,Guangzhou 510006,China;School of Electronics and Information Engineering,Guangdong University of Technology and Education,Guangzhou 510665,China)
机构地区:[1]广东工业大学计算机学院,广东广州510006 [2]广东技术师范大学电子与信息学院,广东广州510665
出 处:《广东工业大学学报》2024年第6期60-68,共9页Journal of Guangdong University of Technology
基 金:国家自然科学基金资助项目(61976058,92267107);广东省重点领域研发计划项目(2021B0101220006);广东省科技计划项目(2019A050510041);广东省自然科学基金资助项目(2021A1515012300);广州市科技计划项目(202103000034)。
摘 要:从心脏核磁共振成像中准确分割左心室内膜,进而得到左心室区域,是对心脏功能进行分析的重要步骤。针对强化学习通过定位左心室内膜边缘来进行分割时容易出现定位偏差而导致分割效果下降的问题,本文提出一种基于方向约束强化学习的左心室内膜分割方法。方法将分割任务划分为两个阶段:在第一阶段提取内膜的全局边缘特征;在第二阶段利用强化学习迭代定位内膜边缘点得到边缘,从而分割出左心室内膜。方法对智能体的定位方向进行约束,能减少定位偏差和重叠的情况从而提高分割精度。最后,在两个公共数据集自动心脏诊断挑战(Automatic Cardiac Diagnosis Challenge, ACDC)和Sunnybrook心脏MR左心室分割挑战(Sunnybrook Cardiac MR Left Ventricle Segmentation Challenge, Sunnybrook)上的实验结果显示:与其他方法相比,本文方法精度较高,其F1-score指标分别为0.948 2、0.938 7,平均垂直距离(Average Perpendicular Distance, APD)分别为3.586 3、4.944 7,能有效地分割左心室内膜。Accurate segmentation of the left ventricular endocardium from cardiac magnetic resonance imaging to obtain the left ventricular region is an important step in the analysis of cardiac function.It is noted that reinforcement learning is prone to localization deviation in left ventricular endocardium segmentation by locating the left ventricular endocardial edges,leading to a performance decrease in the segmentation.To address this,this paper proposes a direction-constrained reinforcement learning method for left ventricular endocardium segmentation,which divides the segmentation task into two stages.In the first stage,the proposed method extracts global edge features of the endocardium,and in the second stage,reinforcement learning is used to iteratively locate the endocardial edge points to obtain the edge,obtaining the segmented left ventricular endocardium.The proposed method constrains the direction of agent positioning,which can reduce the localization deviation and overlap,such that the segmentation accuracy can be improved.Finally,the experimental results on two public datasets,including the Automated Cardiac Diagnosis Challenge(ACDC)and Sunnybrook Cardiac MR Left Ventricle Segmentation Challenge(Sunnybrook),show that the proposed method has higher accuracy than the compared methods.Specifically,the F1-score of the proposed method are 0.9482 and 0.9387,and the Average perpendicular distance(APD)are 3.5863 and 4.9447,which can effectively segment the left ventricular endocardium.
分 类 号:TP389.1[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.233