检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:朱美晔 ZHU Meiye(School of Electrical Engineering,Northeast Electric Power University,Jilin 132012,China)
机构地区:[1]东北电力大学电气工程学院,吉林吉林132012
出 处:《电气应用》2024年第12期24-31,共8页Electrotechnical Application
基 金:吉林省国际科技合作项目(20230402074GH)。
摘 要:随着新型电力系统发展,小干扰稳定问题日益严重,准确评估电力系统低频振荡模式对于提高电网稳定性具有重要意义。提出了一种基于卷积神经网络的电力系统低频振荡模式评估模型,与传统的基于稳态信息的评估方法不同,所提方法考虑了系统运行时负荷受到随机扰动的影响,利用广域测量系统监测变量和关键振荡模式阻尼比并作为模型的输入和输出,采用卷积神经网络训练得到其映射关系。IEEE 10机39节点算例的实验表明,该模型经过离线训练后,能够准确计算系统关键振荡模式阻尼比,并且具有较强的抗干扰能力。With the development of new power systems,the problem of small disturbance stabilization has become increasingly serious,and accurate assessment of low-frequency oscillation modes of power systems is of great significance for improving the stability of power grids.Different from the traditional low-frequency oscillation mode assessment method based on steady state information,the paper considers the influence of random disturbances on the load during system operation,utilizes the Wide Area Measurement System(WAMS)monitoring variables and the key oscillation mode damping ratio as the input and output of the model,and adopts convolutional neural network training to obtain its mapping relationship,and proposes a low-frequency oscillation mode assessment model for power systems based on convolutional neural network.Experiments on the IEEE10 machine 39-node algorithm show that the model can accurately calculate the system critical oscillation mode damping ratio after offline training and has strong anti-interference ability.
分 类 号:TM712[电气工程—电力系统及自动化] TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43