检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴迪 袁晓宏 李冰 杨光 WU Di;YUAN Xiaohong;LI Bing;YANG Guang(Heilongjiang Geomatics Center of MNR,Harbin 150081,China;Heilongjiang Provincial Society of Surveying,Mapping and Geoinformation,Harbin 150081,China;Heilongjiang River and Lake Chief System Support Center,Harbin 150001,China)
机构地区:[1]自然资源部黑龙江基础地理信息中心,黑龙江哈尔滨150081 [2]黑龙江省测绘地理信息学会,黑龙江哈尔滨150081 [3]黑龙江省河湖长制保障中心,黑龙江哈尔滨150001
出 处:《测绘与空间地理信息》2024年第12期14-18,共5页Geomatics & Spatial Information Technology
摘 要:针对河道管理范围内阻水植被实地调查工作量大、耗时长、难度大等问题,本文利用星载雷达ICESat-2的ATL03和ATL08产品,通过关联分析的方法筛选和计算激光点的植被高度,结合Sentinel-2波谱变量,分别使用BP神经网络和随机森林回归算法,构建空间连续的植被高度信息反演模型,快速提取河道管理范围内的阻水植被。实验结果表明,随机森林回归模型在稳定性和准确性方面优于BP神经网络模型,能够更有效地提取河道管理范围内的阻水植被。本方法可提高河道管理中阻水植被调查的效率和准确性,为河道治理和管理工作提供科学的决策参考。This study addresses the issues of heavy workload,time consumption,and difficulty in field survey of water-blocking vegetation within river management areas.Utilizing the ATL03 and ATL08 products from the ICESat-2 satellite ATLAS,vegetation heights were screened and calculated through correlation analysis of laser points.Combined with spectral variables of Sentinel-2,spatially continuous vegetation height inversion models were constructed using BP neural network and random forest regression algorithm to rapidly extract water-blocking vegetation within river management areas.Experimental results indicate that the random forest regression model is superior to the BP neural network model in terms of stability and accuracy,effectively extracting water-blocking vegetation within river management areas.This method can improve the efficiency and accuracy of surveying water-blocking vegetation in river management,providing scientific decision-making support for river governance and management.
关 键 词:ICESat-2 BP神经网络 随机森林回归算法 阻水植被
分 类 号:P237[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200