检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘铁 陈楠 张瀚丹 尚媛园[1] 丁辉[1] 邵珠宏[1] LIU Tie;CHEN Nan;ZHANG Handan;SHANG Yuanyuan;DING Hui;SHAO Zhuhong(Information Engineering College,Capital Normal University,Beijing 100048)
出 处:《首都师范大学学报(自然科学版)》2024年第6期36-48,共13页Journal of Capital Normal University:Natural Science Edition
基 金:北京市自然科技基金面上项目(4242034)。
摘 要:视觉显著物体检测作为计算机视觉领域的关键研究方向,也是学术研究的热点之一。本文系统性地梳理了该领域的研究方法、面临的挑战和未来的发展方向。首先,概述了视觉显著物体检测的发展脉络,以及其在计算机视觉领域的广泛应用;其次,对视觉显著物体检测方法进行了详尽的回顾,涵盖了基于显著性特征以及深度学习框架下的检测方法;再次,深入探讨了基于传统卷积神经网络和全卷积神经网络的显著物体检测方法,以及基于注意力机制的显著物体检测方法,并对视觉显著物体检测领域常用的数据集和评价指标进行了介绍;从次,针对当前视觉显著物体检测面临的挑战,如现有数据集的局限、复杂场景下的检测准确度等,文章进行了总结分析;最后,展望了视觉显著物体检测的未来发展方向。通过本文的综述,旨在为从事视觉显著物体检测的研究者提供全面而深入的参考,以促进该领域的进一步发展。Salient object detection,as a key research direction in the field of computer vision,is also one of the hotspots of academic research.In this paper,we systematically sort out the research methods,challenges and future development directions in this field.First,the development of salient object detection is summarized,as well as its wide application in the field of computer vision.Second,a detailed review of salient object detection methods is provided,covering detection methods based on saliency features as well as those under the deep learning framework.Third,salient object detection methods based on traditional convolutional neural networks and full convolutional neural networks,as well as salient object detection methods based on the attention mechanism,are discussed in depth,and commonly used datasets and evaluation metrics in the field of salient object detection are introduced.Again,the article summarizes and analyzes the current challenges of salient object detection,such as the limitations of existing datasets and the detection accuracy in complex scenes.Finally,it looks forward to the future development direction of salient object detection.Through this review,this article aims to provide a comprehensive and in-depth reference for researchers engaged in salient object detection in order to promote the further development of this field.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49