检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何中海 介石 吴亚东[1] HE Zhonghai;JIE Shi;WU Yadong(School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai,China,Post Code:200240)
机构地区:[1]上海交通大学机械与动力工程学院,上海200240
出 处:《热能动力工程》2024年第11期40-50,共11页Journal of Engineering for Thermal Energy and Power
基 金:国家部委基金资助(P2022-B-V-004-001);国家科技重大专项(J2019-Ⅱ-0004-0024)。
摘 要:为解决轴流压气机正问题分析过程中传统落后角和总压损失系数经验模型在不同叶型和宽工况范围内预测效果差、更新难度大的问题,根据以往积累的叶型仿真计算结果及叶栅、部件级实验中测得的流场参数,采用BP神经网络模型替代常用的经验模型,改进原有计算程序上得到新的压气机正问题分析程序,并对轴流压气机正问题进行了求解分析。在提高神经网络模型的预测精度方面,利用一定范围内的流场参数作为数据集,训练出从基本参数到落后角和总压损失系数的BP神经网络,并将预测相对误差控制在6%和2%之内。针对两台轴流压气机算例进行计算校验,用新分析程序预测结果对比实验和替代之前的计算结果发现,该方法对Stage 37叶片出口参数的预测结果符合实验结果,对高速四级轴流压气机总体性能的预测误差小于7%。In order to solve the problem of poor performance prediction and difficulty in updating traditional deviation angle and total pressure loss coefficient empirical models in the direct problem analysis process of axial compressors in different blade shapes and wide operating conditions,based on the accumulated blade shape simulation calculation results and flow field parameters measured in cascade and component level experiments,a back propagation(BP)neural network model has been used instead of the commonly used empirical model.A new compressor direct problem analysis program is obtained on the basis of improving original calculation program,and the direct problem of axial compressors is solved and analyzed by this program.As for improving the prediction accuracy of the neural network model,the BP neural network is trained from the basic parameters to the deviation angle and the total pressure loss coefficient by using the flow field parameters in a certain range as data sets,which controls the relative error of predictions between 6%and 2%.Computational verification is performed for two axial compressor examples.Comparing the results of the new analysis program with the experimental results and the previous calculation results,it is found that the prediction results of the Stage 37 blade outlet parameters by this method are consistent with the experimental results,and the prediction error of the overall performance of the high speed 4-stage axial compressor is less than 7%.
关 键 词:轴流压气机 正问题分析 神经网络 流动损失预测 流线曲率法
分 类 号:V231.3[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7