检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:倪代天 孙璐悦 呼羽 杜涛 NI Daitian;SUN Luyue;HU Yu;DU Tao(School of Information Science and Technology,North China University of Technology,Beijing 100144;China Special Equipment Inspection&Research Institute,Beijing 100029)
机构地区:[1]北方工业大学信息学院,北京100144 [2]中国特种设备检测研究院,北京100029
出 处:《导航与控制》2024年第4期108-117,共10页Navigation and Control
基 金:国家自然科学基金基础科学中心项目(编号:62388101)。
摘 要:针对一类含有噪声参数不确定性的非线性系统,如何自适应调节噪声参数,实现高精度抗干扰信息融合是亟待解决的问题。信息融合中系统准确的噪声参数是滤波器设计中首先考虑的问题,当实际系统噪声参数与先验信息不一致时,基于卡尔曼滤波无法实现准确的状态估计,导致信息融合性能下降。针对一类噪声参数未知的非线性系统的信息融合问题,借助深度强化学习方法搭建并训练深度Q网络,实现自适应调节系统噪声矩阵大小,进而用于设计扩展卡尔曼滤波器和无迹卡尔曼滤波器,实现抗干扰信息融合。为验证方法的有效性,开展了数值仿真实验。结果表明:基于深度Q网络自适应调节噪声参数使无迹卡尔曼滤波器均方误差保持在0.02以内,扩展卡尔曼滤波器均方误差保持在0.6左右,有效提升了传统卡尔曼滤波器精度,实现了未知噪声参数下的抗干扰信息融合。For a class of nonlinear systems with uncertainty in noise parameter,how to adaptively adjust the noise parameters to achieve high-precision anti-disturbance information fusion is an urgent problem to be solved.In information fusion,the accurate estimation of system noise parameters is the primary consideration in filter design.When the system noise parameters are inconsistent with the prior information,the Kalman filters cannot achieve accurate state estimation,leading to a decline in the performance of information fusion.To address the information fusion problem of a class of nonlinear systems with unknown noise parameters,a deep Q-network is constructed and trained with the help of deep reinforcement learning methods to adaptively adjust the size of the system noise matrix,which is then used to design extended Kalman filters and unscented Kalman filters to realize the interference-resistant information fusion.To verify the effectiveness of the method,numerical simulation experiments are conducted.The results show that with the adaptive estimation of the noise parameters based on deep Q-network,the mean square error of the unscented Kalman filter is kept within 0.02 and the mean square error of the extended Kalman filter is kept around 0.6,which effectively improves the accuracy of the traditional Kalman filter and realize the anti-disturbance information fusion under unknown noise parameters.
分 类 号:TP273.2[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33