BP神经网络预测冲击强化45钢的中温热稳定性  被引量:1

Prediction of Medium Thermal Stability of 45 Steel after Impact Strengthening with BP Artificial Neural Network

在线阅读下载全文

作  者:姬帅[1,2] 张佳乐 王海丽 JI Shuai;ZHANG Jiale;WANG Haili(School of Materials Science and Engineering,Xi'an Shiyou University,Xi'an 710065,China;State Key Laboratory of Materials-Oriented Chemical Engineering,Nanjing Tech University,Nanjing 210009,China)

机构地区:[1]西安石油大学材料科学与工程学院,陕西西安710065 [2]南京工业大学材料化学工程国家重点实验室,江苏南京210009

出  处:《热加工工艺》2024年第23期159-164,共6页Hot Working Technology

基  金:国家级科研创新训练计划项目(202210705049);陕西省自然科学基础研究计划面上项目(2021JM-410)。

摘  要:室温下采用自由落体式对正火态45钢进行冲击强化,对冲击强化正火态45钢进行中温时效处理,分别加热至450、550、650℃,每组温度均保温10、20、30、40 min,同时对各组试样进行显微硬度测试,并对加热至650℃的4种试样进行显微组织观察;以试样的实际状态参量作为学习样本对3层BP神经网络进行训练。结果表明:BPANN能够对冲击强化正火态45钢的中温热稳定性进行预测,且误差可以控制在3%~6%;BPANN的预测值均大于实测值,但是预测值的变化趋势与实测值的变化趋势一致,网络的预测精度可以通过提高误差函数的收敛速率来得到提高。通过对650℃试样显微组织的观察,可以判定网络的输入层涉及的相关内容能让BPANN的预测结果反映出材料的真实状态。本研究可以降低实验成本、减少实验数量,有助于对冲击强化正火态45钢在其他加热温度下的热稳定性进行预测。The impact strengthened normalized 45 steel which was impact strengthened with free-fall type at room temperature have been aged at medium temperature.The steel was heated to 450℃,550℃and 650℃,respectively.Temperature of each group was kept for 10 min,20 min,30 min and 40 min,and the microhardness of each group was tested.Micro-structure of four kinds of samples heated to 650℃was observed.Taking the actual state parameters of samples as the learning sample,the three-layer BP neural network was trained.The results show that BPANN can predict the thermal stability of impact strengthened normalized 45 steel at medium temperature,and the error can be controlled within 3%-6%.Predicted values of BPANN are all larger than the measured ones,but the variation trend of predicted values is consistent with that of measured values.Prediction accuracy of the network can be improved by increasing the convergence rate of error function.Through observation on microstructure of the sample at 650℃,it can be determined that relevant contents involved in input layer of the network can make prediction result of BPANN reflect real state of the material.This work can reduce experimental cost and number of experiments,it's helpful to predict the thermal stability of impact strengthened normalized 45 steel at other heating temperatures.

关 键 词:人工神经网络 BP算法 冲击强化 正火态45钢 中温热稳定性 

分 类 号:TG161[金属学及工艺—热处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象