检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王旭[1,2] 屈科 杨元平 高榕泽[1] 门佳 WANG Xu;QU Ke;YANG Yuanping;GAO Rongze;MEN Jia(School of Hydraulic and Environmental Engineering,Changsha University of Science&Technology,Changsha 410114,China;Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province,Changsha 410114,China;Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province,Changsha 410114,China;Zhejiang Institute of Hydraulics&Estuary,Hangzhou 310017,China)
机构地区:[1]长沙理工大学水利与环境工程学院,湖南长沙410114 [2]水沙科学与水灾害防治湖南省重点实验室,湖南长沙410114 [3]洞庭湖水环境治理与生态修复湖南省重点实验室,湖南长沙410114 [4]浙江省水利河口研究院,浙江杭州310017
出 处:《海洋工程》2024年第6期108-119,共12页The Ocean Engineering
基 金:国家重点研发计划资助项目(2022YFC3103601);浙江省自然科学基金项目(LY22E090007);浙江省水利厅科技计划项目(RC2020)。
摘 要:涌潮作为一种特殊的强非线性间断流,携带着巨大的能量。在涌潮区域,桥墩等桩柱式建筑物受到的涌潮冲击作用力巨大,可能对涉水结构造成严重破坏。因此,迅速预测和评估涌潮对桩柱体的冲击作用是预防涌潮破坏工作中的关键部分,对海洋工程建设和人民生命财产安全至关重要。以一维卷积神经网络(CONV1D)为基础,搭建涌潮对桩柱体冲击过程水动力特性演变的预测模型。同时利用开源CFD软件OpenFOAM和Wave2Foam库,建立涌潮数值水槽,通过数值计算得到涌潮对桩柱体冲击的水动力特性数据集。以多测点的水位时间序列为输入样本,完成涌潮对桩柱体冲击载荷的预测和评估。结果表明:该预测模型得到的涌潮对桩柱体的冲击载荷和数值计算结果基本吻合。在最大的误差平方和情况下,模型评估涌潮对桩柱体冲击作用的最大载荷误差平均值为3.69%,最大荷载到达时间误差平均值仅为2.11%;且只需要较少的计算资源便可获得较高的计算效率,能提前准确获取桩柱体所受载荷信息。通过卷积神经网络预测,可以评估灾害发生的可能性,提前采取防御措施,减少灾害造成的损失。As a unique form of strong nonlinear intermittent flow,tidal bore carries immense energy.In areas affected by tidal bore,pile structures such as bridge piers,characterized by pillar-like constructions,face significant impact forces,which could severely damage hydraulic structures.Therefore,prompt prediction and assessment of the impact of tidal bores on piles is a key component of tidal bore damage prevention,crucial for marine construction and the safety of people’s lives and properties.Utilizing one-dimensional convolutional neural network(CONV1D),a prediction model for the evolution of hydrodynamic characteristics of piles during tidal bore impacts was developed.Moreover,with the aid of open-source CFD software OpenFOAM and the Wave2Foam library,a numerical tidal bore flume was established,generating a hydrodynamic characteristics dataset for bore tide impacts on piles through numerical calculations.Using multi-point water level time series as input samples,the model successfully predicts and assesses the impact load on piles caused by tidal bore.Results indicate that the predicted impact loads on piles by the model are in good agreement with the numerical calculations.Even in the case of the maximum sum of squared errors,the average maximum load error assessed by the model is 3.69%,with an average maximum load arrival time error of only 2.11%.Moreover,the model achieves high computational efficiency with minimal computational resources,allowing for early and accurate acquisition of load information on piles.Through neural network prediction,it is possible to assess the likelihood of disaster occurrence,take preventative measures in advance,and minimize damage caused by disasters.
分 类 号:TV139.2[水利工程—水力学及河流动力学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.2.160