双硫死亡相关基因乳腺癌预后模型的构建与验证  

Construction and validation of a prognostic model for breast cancer in disulfidptosis related genes

在线阅读下载全文

作  者:刘浩然 董雨晴 王萍玉[1] LIU Hao-ran;DONG Yu-qing;WANG Ping-yu(School of Public Health,Binzhou Medical College,Yantai,Shandong 264003,China)

机构地区:[1]滨州医学院公共卫生学院,山东烟台264003

出  处:《现代预防医学》2024年第24期4585-4590,4608,共7页Modern Preventive Medicine

基  金:山东省自然科学基金重点项目(No.ZR2020KH015)。

摘  要:目的本研究旨在探究双硫死亡相关基因(DRGs)与乳腺癌患者预后之间的关联,建立风险预后模型并进行验证,为乳腺癌患者的预后提供新的生物标志物。方法使用R语言对双硫死亡基因绘制CNV景观,鉴定共相关和差异的DRGs,使用单因素Cox回归分析和Lasso-Cox回归分析的方法构建风险评分预后模型,绘制Kaplan-Meier生存曲线、ROC曲线及校准曲线对该模型进行验证,随后联合临床特征构建列线图预后预测模型。结果构建了一个由8个DRGs组成的乳腺癌患者的风险预后模型,训练集中ROC曲线1、3、5年的AUC为0.809、0.848、0.883,DCA显示该模型能更好地预测乳腺癌的预后。结论本研究部构建了一个由8个DRGs搭建的风险评分模型,该模型预后价值较好,可为乳腺癌的预后研究提供新的方向。Objective To explore the association between disulfidptosis related genes(DRGs)and the prognosis of breast cancer patients and establish a risk prognosis model and verify it,and provide new biomarkers for the prognosis of breast cancer patients.Methods CNV landscape was drawnin R language.DRGs of co-correlations and differences were identified.The risk score prognostic model was constructed by using univariate Cox regression analysis and Lasso-Cox regression analysis.Kaplan-Meier survival curve,ROC curve and calibration curve for the model was drawn.A nomogram prognostic prediction model was constructed by combining the clinical features.Results A risk prognostic model of breast cancer patients composed of 8 DRGs was constructed,and AUC of the ROC curve at 1,3,and 5 years was 0.809,0.848,0.883.DCA showed that the model could better predict breast cancer prognosis.Conclusion This research department has constructed a risk score model with 8 DRGs,which has a good prognostic value and can provide a new direction for the study of breast cancer prognosis.

关 键 词:双硫死亡 乳腺癌 预后模型 单细胞分析 生物信息学 

分 类 号:R735.7[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象