面向车联网的基于卷积神经网络的入侵检测模型  

An intrusion detection model based on convolution neural network for Internet of vehicles

在线阅读下载全文

作  者:张锐[1] ZHANG Rui(Department of Information Engineering,Zhumadian Vocatiomal and Technical College,Zhumadian 463003,China)

机构地区:[1]驻马店职业技术学院信息工程学院,河南驻马店463003

出  处:《电信科学》2024年第12期51-62,共12页Telecommunications Science

基  金:河南省科技攻关项目(No.212102210515)。

摘  要:为了提高车联网入侵检测的准确率,提出了基于超参数优化卷积神经网络的集成的入侵检测系统(hyper-parameter optimization convolution neural network-based ensemble Intrusion detection system,CNES)模型。CNES模型利用卷积神经网络构建集成学习的基学习器,并利用粒子群优化算法优化卷积神经网络的超参数,进而优化卷积神经网络模型。利用平均法和级联法的集成策略构建集成学习模型,提高检测攻击的准确率。通过车内网络数据集Car-Hacking和车外网络数据集CICIDS2017验证CNES模型的性能。性能分析表明,提出的CNES模型有效地提高了检测网络攻击的性能。在Car-Hacking数据集上,CNES模型的F1值达到100%。In order to improve the accuracy of detecting the cyber-attacks in Internet of vehicles,hyper-parameter optimization convolution neural network-based ensemble Intrusion detection system(CNES)was proposed.In CNES,the convolution neural network(CNN)was adopted to serve as based learner in ensemble learning.Moreover,the particle swarm optimization was utilized to optimize the hyber-parameters of the CNN,and then CNN model was optimized.Confidence averaging and concatenation techniques were constructed to improve the accuracy.The performance of the proposed CNES was measured based on Car-Hacking and CICIDS2017 datasets.This shows the effectiveness of the proposed CNES for cyber-attack detection.The CNES achieves F1 score of 100%on Car-Hacking dataset.

关 键 词:车联网 入侵检测 卷积神经网络 粒子群优化算法 集成学习 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象