检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吕闯 庞敏 刘普 LYU Chuang;PANG Min;LIU Pu(Guangdong Midea Air-Conditioning Equipment Co.,Ltd.,Foshan,Guangdong Province,528300 China)
机构地区:[1]广东美的制冷设备有限公司,广东佛山528300
出 处:《科技资讯》2024年第23期48-53,共6页Science & Technology Information
摘 要:为了解决传统空调温度控制方法在满足不同用户、不同场景需求时的局限性,提出了一种空调智能温度控制算法。此算法通过结合多元线性回归(Linear Regression)的趋势预测、贝叶斯网络(Bayesian Network)的室内外环境突变修正和决策树(Decision Tree)的用户体征修正,形成了一个综合考虑多种因素的温度调节模型,再通过三合一修正的加权平均(Weighted Average)方法,成为LBD-WA反馈提升模型。该模型不仅能够考虑实时的环境变化,还可以根据用户的温感和所处时区季节做出相应调整,从而更准确地为用户提供舒适的温度环境。为了验证该算法的效果,将此模型与其他机器学习方法进行了对比实验。结果显示:LBD-WA模型在预测准确性和多场景适应性方面表现优异,LBD-WA模型在准确率方面比传统空调方法提高了6%,这为未来智能家居的温控技术提供了一个新的方向。This article proposes an intelligent temperature and air conditioning control algorithm to address the limitations of traditional air conditioning temperature control methods in meeting the diverse needs of different us-ers and scenarios.The algorithm combines trend prediction using Multiple Linear Regression,environmental change correction using Bayesian network,and user characteristic correction using Decision Tree to form a tem-perature adjustment model that comprehensively considers multiple factors.By using the Weighted Average method with three in one correction,and becomes the LBD-WA feedback enhancement model.It not only considers real-time environmental changes but also adjusts according to the user′s temperature preferences and seasonal changes in their time zone to provide a more accurate and comfortable temperature environment.To validate the effectiveness of this algorithm,comparative experiments were conducted between this model and other machine learning meth-ods.The results show that the LBD-WA model performs well in terms of prediction accuracy and adaptability to multiple scenarios,with a 6%improvement in accuracy compared to traditional air conditioning methods.This pro-vides a new direction for temperature control technology in future smart homes.
关 键 词:多重反馈修正 多元线性回归 贝叶斯网络 决策树 异常调节反馈 时区季节反馈 体征变化反馈
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43