检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张鹏飞 ZHANG Pengfei
出 处:《电力系统装备》2024年第11期99-100,119,共3页Electric Power System Equipment
摘 要:随着大数据技术的发展,电力系统负荷预测迎来了新的机遇和挑战。文章针对当前电力系统负荷预测中存在的问题,提出了一种基于大数据技术的电力系统负荷预测模型。该模型通过整合多源异构数据,运用机器学习算法和深度学习方法,实现了高精度、实时性和鲁棒性的负荷预测。试验结果表明,该模型相比传统方法具有显著优势,为电力系统的优化调度和运行控制提供了有力支持。With the development of big data technology,power system load forecasting has ushered in new opportunities and challenges.The article proposes a power system load forecasting model based on big data technology to address the problems existing in current power system load forecasting.This model integrates heterogeneous data from multiple sources and utilizes machine learning algorithms and deep learning methods to achieve high-precision,real-time,and robust load forecasting.The experimental results show that the model has significant advantages compared to traditional methods,providing strong support for the optimization scheduling and operation control of power systems.
分 类 号:TM715[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.207