考虑静水压力的压电弹性层合圆柱壳动力响应的控制模型  被引量:3

DYNAMICS RESPONSE CONTROL MODEL OF THE PIEZOELASTIC LAMINATED CYLINDRICAL SHELL UNDER HYDROSTATIC PRESSURE

在线阅读下载全文

作  者:李红云[1] 刘正兴[1] 

机构地区:[1]上海交通大学工程力学系,上海200030

出  处:《复合材料学报》2002年第6期13-19,共7页Acta Materiae Compositae Sinica

基  金:国家自然科学基金资助(10132010);船舶工业国防科技应用;基础研究基金资助项目(99J41.4.4)

摘  要: 基于经典的层合板理论和Navier解法,对静水压作用下压电弹性层合圆柱壳的动力问题的主动控制进行了研究。首先由Hamilton原理导出压电弹性层合壳的非线性动力基本方程。利用压电材料的正、逆压电效应,通过闭环方式,采用速度反馈控制方法得到了任意形式动载作用下带压电感测层/激励层的简支层合圆柱壳动力响应的主动控制模型。数值算例中对于三种不同的外载条件下该控制模型对圆柱壳的动力响应的控制效果进行了研究。结果表明本文中提出的控制模型能够有效抑制动载作用下结构的振动。Based on the classical laminated plate theory and Navier solutions, the control of the piezoelastic laminated cylindrical shell's dynamic response under hydrostatic pressure was discussed in this paper. Considering the direct and inverse piezoelectric effects of piezoelectric materials and using Hamilton's principle, the nonlinear dynamic equations of the piezoelastic laminated cylindrical shell were derived first. Using the close circuit method, the charge enclosed in the piezoelectric sensor layer was measured. Furthermore, the voltage applied on the actuator layer was obtained based on the closedcircuit charge signal of the sensor and velocity negative feedback control algorithm. An active dynamic response control model of simply supported laminated cylindrical shells with piezoelectric sensor/actuator under various dynamic loads was established at last. Three types of loading conditions, namely, sinusoidally distributed load, line load and moving point load, were considered in numerical examples to investigate the performance of the control model. The numerical results show that the active control model can suppress the vibration of the structure under dynamic loading effectively.

关 键 词:层合圆柱壳 控制模型 压电弹性 动力响应 感测层 激励层 静水压力 复合板 复合材料 主动控制 振动控制 

分 类 号:TB33[一般工业技术—材料科学与工程] TB535.1[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象