检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:丁飞 张祥林 刘明君 DING Fei;ZHANG Xianglin;LIU Mingjun(School of Computer and Information Engineering,Fuyang Normal University,Fuyang 236037,China)
机构地区:[1]阜阳师范大学计算机与信息工程学院,安徽阜阳236037
出 处:《辽宁工程技术大学学报(自然科学版)》2024年第6期121-128,共8页Journal of Liaoning Technical University (Natural Science)
基 金:安徽省教育厅自然科学研究重点项目(KJ2021A0657);阜阳师范大学阜阳市人工智能产业链研究创新团队项目(CYLTD202213);阜阳师范大学博士科研启动基金项目(2020KYQD0026)。
摘 要:为解决内河航道通航时船舶相互遮挡导致的错检和漏检问题,提出一种基于改进YOLOv5模型的内河道船舶检测方法。该方法采用C2f模块以捕捉和融合多尺度特征,增强低级特征的语义信息;引入ShuffleAttention模块强化特征表示,使模型能够聚焦于信息量更大的区域,并有效抑制无关特征;同时,采用Wise-IoU损失函数,有效防止低质量锚框产生有害梯度,加速模型的优化过程。研究结果表明:改进后模型的平均精度mAP@0.5达到98.9%,mAP@0.5:0.95达到79.1%,较原YOLOv5模型分别提高了1.2和2.8个百分点。此外,针对数据集中的6种船舶分别进行实验,实验结果显示各种船舶的检测精度均有提升,其中内河航道常见的矿砂船的mAP@0.5提升了1.5个百分点,mAP@0.5:0.95提升5.9个百分点。研究结论为内河道船舶检测提供了可靠的技术支持。To address the issue of misdetection and missed detection caused by vessel occlusion in inland waterway navigation,this study proposes an inland waterway vessel detection method based on an improved YOLOv5 model.The method incorporates the C2f module to capture and integrate multi-scale features,enhancing the smantic information of low-level features.Additionally,the Shuffle Attention module is introduced to strengthen feature representation,enabling the model to focus on more informative regions while effectively suppressing irelevant features.The Wise-IoU loss function is also employed to prevent low-quality anchor boxes from geneating harmful gradients,thereby accelerating the optimization process.Experimental results demonstrate that the improved model achieves a mean average precision(mAP@0.5)of 98.9%and an mAP@0.5:0.95 of 79.1%,representing an increase of 1.2 and 2.8 percentage points,respectively,compared to the original YOLOv5 model.Furthermore,experiments conducted on six types of vessels in the dataset reveal that detection accuracy has improved across all vessel types.Notably,for the commonly encountered sand carriers in inland waterways,the mAP@0.5 increased by 1.5 percentage points,and the mAP@0.5:0.95 improved by 5.9 percentage points.These findings provide reliable technical support for inland waterway vessel detection.
关 键 词:内河航道 船舶检测 YOLOv5模型 注意力机制 Wise-IoU损失函数
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.24.158