埋地燃气管道失效风险时间序列预测在常州市的应用  

Application of time series prediction of failure risk of buried gas pipeline in Changzhou

作  者:朱庆杰[1] 李德广 易善文 ZHU Qingjie;LI Deguang;YI Shanwen(Jiangsu Key Laboratory of Oil and Gas Storage and Transportation Technology,Changzhou University,Changzhou Jiangsu 213164,China)

机构地区:[1]常州大学江苏省油气储运技术重点实验室,江苏常州213164

出  处:《工业安全与环保》2025年第1期25-30,共6页Industrial Safety and Environmental Protection

摘  要:为研究常州市埋地燃气管道失效风险的时间效应,选取了影响其失效概率的4个主要因素,根据灰色模型GM(1,1)分析了各影响因素的时间效应,在此基础上将灰色模型与神经网络有机结合构建了灰色神经网络模型(GNNM),进而利用灰色神经网络模型分析了各因素影响下常州市埋地燃气管道综合失效概率的时间效应,然后借助失效概率转换函数将失效概率转换为预警失效概率,最后实现了对常州市埋地燃气管道2027年的失效风险预警。预警结果表明,2027年研究地区大部分区域的埋地燃气管道风险等级将进入较高风险,东南及东北的小部分区域风险将变为高风险,需要尽快采取相关措施抑制其失效风险的持续上升以及预防失效致灾事故的发生。In order to study the time effect of the failure risk of buried gas pipeline in Changzhou,four main factors affecting the failure probability were selected,and the time effect of each influencing factor was analyzed according to the grey model GM(1,1).On this basis,the grey model and neural network were organically combined to construct the grey neural network model(GNNM).Then,the grey neural network model was used to analyze the time effect of the comprehensive failure probability of Changzhou buried gas pipeline under the influence of various factors,and the failure probability was converted into the early warning failure probability with the help of the failure probability con-version function.Finally,the failure risk early warning of Changzhou buried gas pipeline in 2027 was realized.The warning results show that,in 2027,the risk level of buried gas pipelines in most areas of the study area will enter high risk,and the risk of a small part of the southeast and northeast regions will become high risk.Therefore,it is necessary to take relevant measures as soon as possible to restrain the continuous rise of failure risk and prevent the occurrence of disaster caused by failure.

关 键 词:埋地燃气管道 失效时间效应 GM模型 灰色神经网络 失效概率 

分 类 号:TU9[建筑科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象