检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王晓东[1] 吴家豪 高兴 刘颖明[1] Wang Xiaodong;Wu Jiahao;Gao Xing;Liu Yingming(Institute of Electrical Engineering,Shenyang University of Technology,Shenyang 110870,China)
出 处:《太阳能学报》2024年第12期243-249,共7页Acta Energiae Solaris Sinica
基 金:国家自然科学基金(52007124);辽宁省揭榜挂帅科技攻关专项(2021JHI/10400009)。
摘 要:针对海上风电场多分支集电线路故障定位大都依赖于多测点的问题,提出一种基于卷积神经网络(CNN)的集电线路故障选线方法,基于稀疏量测利用局部连接实现集电线路故障选线。该方法以少量节点电流信号作为特征量,建立以稀疏样本的CNN初始网络损失最小为目标的量测位置优化模型,利用离散二进制粒子群(BPSO)算法进行模型求解得出最优量测位置。算例分析表明,所提方法可在稀疏量测下以较高精度实现故障选线,对采样频率要求较低,不受故障起始角、故障电阻、故障位置等因素的影响,且对量测噪声具有较好的鲁棒性。To solve the problem that the fault location of multi-branch collecting lines of offshore wind farm mostly depends on multiple measurement points,a method of fault line selection of collecting lines based on convolutional neural network(CNN)is proposed,which uses local connection based on sparse measurement to realize fault line selection of collector lines.In this method,a small number of node current signals are taken as the characteristic quantity,and a measurement position optimization model is established with the goal of minimizing the initial CNN network loss of sparse samples.The binary particle swarm optimization(BPSO)algorithm is used to solve the model and obtain the optimal measurement position.The example analysis shows that the proposed method can achieve fault line selection with high accuracy under sparse measurements,with low sampling frequency requirements,and is not affected by factors such as fault starting angle,fault resistance,and fault location.It also has good robustness to measurement noise.
关 键 词:海上风电场 集电线路 卷积神经网络 离散二进制粒子群优化算法 故障选线 量测位置
分 类 号:TM773[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38