检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张倩 Qian Zhang(Department of Mathematical Sciences,Tsinghua University,Beijing 100084;School of Mathematics and Statistics,Fujian Normal University,Fuzhou 350117)
机构地区:[1]清华大学数学科学系,北京100084 [2]福建师范大学数学与统计学院,福州350117
出 处:《数学物理学报(A辑)》2025年第1期1-30,共30页Acta Mathematica Scientia
基 金:福建省高校数学学科联盟科研项目专项资金(2025SXLMQN04)。
摘 要:该文关注以下非线性耦合方程组{−Δu_(1)+ω_(1)u_(1)−1/2Δ(u_(1)^(2))u_(1)=μ_(1)|u_(1)|^(p−1)u_(1)+β|u_(2)|p+1/2|u_(1)|p−3/2u_(1),−Δu_(2)+ω_(2)u_(2)−1/2Δ(u_(2)^(2))u_(2)=μ_(2)|u_(2)|^(p−1)u_(2)+β|u_(1)|p+1/2|u_(2)|p−3/2u_(2),∫_(Ω)|u_(i)|^(2) dx=ρ_(i),i=1,2,(u_(1),u_(2))∈H_(0)^(1)(Ω;R^(2))以及线性耦合方程组{−Δu_(1)+ω_(1)u_(1)−1/2Δ(u_(1)^(2))u_(1)=μ_(1)|u_(1)|^(p−1)u_(1)+βu_(2),−Δu_(2)+ω_(2)u_(2)−1/2Δ(u_(2)^(2))u_(2)=μ_(2)|u_(2)|^(p−1)u_(2)+βu_(1),∫_(Ω)|u_(i)|^(2) dx=ρ_(i),i=1,2,(u_(1),u_(2))∈H_(0)^(1)(Ω;R^(2))其中Ω⊂R^(N)(N≥1)是一个有界光滑区域,ω_(i),β∈R,μ_(i),ρ_(i)>0,i=1,2.而且,若p>1,N=1,2且若1<p≤3N+2/N-2,N≥3.应用变量替换,一方面,证明了非线性耦合方程组正规化解的存在性和轨道稳定性,以及当β→−∞时正规化解的极限行为.另一方面,应用极小化约束方法来获得线性耦合方程组的正规化解的存在性.与之前的一些结果相比,将现有结果扩展到了拟线性薛定谔方程组,并获得了线性耦合情形下的正规化解.This paper is concerned with the following nonlinear coupled system−Δu_(1)+ω_(1)u_(1)−1/2Δ(u_(1)^(2))u_(1)=μ_(1)|u_(1)|^(p−1)u_(1)+β|u_(2)|p+1/2|u_(1)|p−3/2u_(1)−Δu_(2)+ω_(2)u_(2)−1/2Δ(u_(2)^(2))u_(2)=μ_(2)|u_(2)|^(p−1)u_(2)+β|u_(1)|p+1/2|u_(2)|p−3/2u_(2)∫_(Ω)|u_(i)|^(2) dx=ρ_(i),i=1,2,(u_(1),u_(2))∈H_(0)^(1)(Ω;R^(2))and linear coupled system−Δu_(1)+ω_(1)u_(1)−1/2Δ(u_(1)^(2))u_(1)=μ_(1)|u_(1)|^(p−1)u_(1)+βu_(2)−Δu_(2)+ω_(2)u_(2)−1/2Δ(u_(2)^(2))u_(2)=μ_(2)|u_(2)|^(p−1)u_(2)+βu_(1)∫_(Ω)|u_(i)|^(2) dx=ρ_(i),i=1,2,(u_(1),u_(2))∈H_(0)^(1)(Ω;R^(2))whereΩ⊂R^(N)(N≥1)is a bounded smooth domain,ω_(i),β∈R,μ_(i),ρ_(i)>0,i=1,2.Moreover,p>1 if N=1,2 and 1<p≤3N+2/N-2 if N≥3.Using change of variables,on the one hand,we prove the existence and stability of normalized solutions in nonlinear coupled system and the limiting behavior of normalized solutions asβ→−∞.On the other hand,we apply the minimization constraint technique to obtain the existence of normalized solutions for linear coupled system.Compared with some previous results,we extend the existing results to the quasilinear Schrödinger system and also obtain normalized solutions for the linear coupling case.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222