检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:舒垚荣 陈聆昊 何洋 林晓宇 吴天明 宋梦婕 张文 陆谢娟[2] 昝飞翔 毛娟[2] 吴晓晖[2] SHU Yaorong;CHEN Linghao;HE Yang;LIN Xiaoyu;WU Tianming;SONG Mengjie;ZHANG Wen;LU Xiejuan;ZAN Feixiang;MAO Juan;WU Xiaohui(Institute of Artificial Intelligence,Huazhong University of Science and Technology,Wuhan 430074,China;School of Environmental Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;Yangtze Ecology and Environment Co.,Ltd.,Wuhan 430000,China)
机构地区:[1]华中科技大学人工智能研究院,湖北武汉430074 [2]华中科技大学环境科学与工程学院,湖北武汉430074 [3]长江生态环保集团有限公司,湖北武汉430000
出 处:《环境科学与技术》2025年第1期108-117,共10页Environmental Science & Technology
基 金:国家重点研发计划项目(2023YFC3207201);长江生态环保集团有限公司科研项目(HBHB2022018)。
摘 要:针对工业废水-生活污水复合型污水厂由于突发水污染事件而导致污水厂工艺冲击负荷大、达标排放有风险等问题,该研究以湖北省某复合型污水处理厂为研究对象,利用自回归移动平均(ARIMA)算法构建进水水质预测及异常预警模型;结合自回归(ACF)、偏自回归(PACF)和增强迪基-富勒测试(ADF)分别确定化学需氧量、氨氮、总氮、总磷预测模型的最佳参数,优化水质预测模型,并探究不同监测频率和预测步长对模型的影响;在此基础上,选择自编码器(AE)和K-邻近值(KNN)算法构建水质预警模型,实现了水质的异常预警。该研究不仅为污水厂提前应对突发水污染事件提供科学依据,同时也为污水处理厂智能化转型奠定理论基础。Domestic-industrial integrated wastewater treatment plants often face significant operational challenges and risks of non-compliant discharge due to emergency pollution incidents.Focusing on a wastewater treatment plant located in a satel-lite city in Hubei Province,China,the autoregressive integrated moving average(ARIMA)algorithm was employed to devel-op a model for influent water quality prediction.The optimal parameters for predicting chemical oxygen demand,ammonia nitrogen,total nitrogen,and total phosphorus were determined using autocorrelation function(ACF),partial autocorrelation function(PACF),and augmented Dickey-Fuller(ADF)tests,leading to the optimization of the prediction model.Besides,the impact of different monitoring frequencies and prediction intervals were investigated.Additionally,autoencoder(AE)and K-nearest neighbors(KNN)algorithms were utilized to construct a water quality warning model,effectively enabling anoma-ly detection.This research not only provides a scientific basis to respond to emergency events but also lays a theoretical foun-dation for the intelligent transformation of traditional wastewater treatment plants.
关 键 词:复合型污水处理厂 时序预测 ARIMA 异常检测 异常预警
分 类 号:X703[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43