检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵金凯 宁春林 王为民 袁国正 纪永刚 方越 李超 ZHAO Jinkai;NING Chunlin;WANG Weimin;YUAN Guozheng;JI Yonggang;FANG Yue;LI Chao(First Institute of Oceanography,MNR,Qingdao 266061,China;College of Oceanography and Space Informatics,China University of Petroleum(East China),Qingdao 266580,China;Key Laboratory of Marine Science and Numerical Modeling,MNR,Qingdao 266061,China;Shandong Key Laboratory of Marine Science and Numerical Modeling,Qingdao 266061,China;Qingdao Marine Science and Technology Center,Qingdao 266237,China)
机构地区:[1]自然资源部第一海洋研究所,山东青岛266061 [2]中国石油大学(华东)海洋与空间信息学院,山东青岛266580 [3]自然资源部海洋环境科学与数值模拟重点实验室,山东青岛266061 [4]山东省海洋环境科学与数值模拟重点实验室,山东青岛266061 [5]青岛海洋科技中心,山东青岛266237
出 处:《海洋科学进展》2025年第1期214-230,共17页Advances in Marine Science
基 金:国家重点研发计划项目(2022YFC3104301);崂山实验室科技创新项目(LSKJ202201601)。
摘 要:随着海洋生态环境研究的不断深入,对浮游生物群落结构时空变化观测的需求日益增长。然而,目前基于人工智能的浮游生物分类算法,如多层卷积神经网络(Convolutional Neural Network,CNN),在捕捉浮游生物多样性形态方面存在局限,效率和准确率均较低。为解决这一难题,本文提出一种浮游生物分类算法,该算法以轻量化视觉转换模型(Mobile Vision Transformer,MobileViT)为基础架构,使用深度可分离卷积替代标准卷积以减少参数的数量,有效减少模型复杂度;同时,利用局部感知注意力机制降低了注意力计算的复杂度,从而提高了模型的计算效率。本文使用2018年在南太平洋海域采集的剖面浮游生物个体图像,构建了一个包含9个浮游生物类别的数据集。基础分类模型应用于人工分类验证集时,加权平均准确率达到了92.04%。为进一步提升分类性能,本文在模型尾部应用分步概率滤波器消除错误分类,加权平均精确率提高到了96.93%。此外,本文使用同海域另一剖面的浮游生物个体图像作为测试集,对改进后的模型进行了测试,结果显示,该模型在测试集上的top1准确率达到了93.77%,为海洋浮游生物的分类工作提供了一种更加高效、准确的方法。Following the development of marine ecological environment research,it requires more observations to examine the spatial and temporal changes in the structure of plankton communities.However,there are some limitations of current artificial intelligence-based classification algorithms for plankton,such as multi-layer convolutional neural networks(CNN),in capturing the morphological diversity of plankton,and this results in a relatively low efficiency and accuracy.This paper proposes an innovative algorithm based on the lightweight visual transformation model(Mobile Vision Transformer,MobileViT)to address this challenge.It replaces standard convolutions with depthwise separable convolutions to reduce the number of parameters,and this method effectively decreases model complexity.At the same time,it utilizes a local perception attention mechanism to lower the complexity of attention calculations,and thereby enhances the model’s computational efficiency.Individual images of plankton collected from the South Pacific Ocean in 2018 are utilized to construct a dataset encompassing nine plankton categories.The results show that the base model achieves a weighted average accuracy of 92.04%when applied to a manually classified validation set.A step-by-step probability filter at the tail of the model is applied to eliminate misclassifications to further improve classification performance,and it results in an increased weighted average precision of 96.93%.Additionally,we test the improved model using individual images of plankton from another profile in the same oceanic region as the test set,and the model achieves a top1 accuracy of 93.77%on the test set.This paper provides a more efficient and accurate method for marine plankton classification.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3