检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:全家乐 刘晔[1] 马龙岩 范文峰[1,2] 全伟 QUAN Jiale;LIU Ye;MA Longyan;FAN Wenfeng;QUAN Wei(Institute of Large-scale Scientific Facility and Centre for Zero Magnetic Field Science,Beihang University,Beijing 100191,China;Hangzhou Institute of Extremely-Weak Magnetic Field Major National Science and Technology Infrastructure,Hangzhou 310051,China)
机构地区:[1]北京航空航天大学大科学装置研究院/零磁科学中心,北京100191 [2]杭州极弱磁场国家重大科技基础设施研究院,杭州310051
出 处:《工程科学学报》2025年第3期489-495,共7页Chinese Journal of Engineering
基 金:国家自然科学基金资助项目(62103026);中国博士后科学基金资助项目(2024T171116)。
摘 要:基于无自旋交换弛豫(Spin exchange relaxation-free,SERF)的原子自旋耦合磁强计同时具有敏感角速率和抑制环境磁场扰动的能力,是一种很有前途的长期导航应用工具.抽运光功率误差从标度因数和零偏稳定性两个方面限制了SERF耦合磁强计的长期稳定性,目前针对SERF惯性测量的抽运光误差分析均为分析标度因数误差,缺乏对零偏稳定性的分析.为了分析抽运光功率对系统的零偏稳定性影响,本文基于泰勒展开,将K–Rb–^(21)Ne耦合磁强计动力学系统由非线性系统简化为线性时不变系统,并基于状态空间方法推导了抽运光功率频率响应模型,最后在SERF耦合磁强计上对该模型进行了实验验证.理论和实验结果表明,耦合磁强计的磁光非正交将在光功率传递函数中引入微分环节,导致在耦合磁强计工作带宽里,耦合磁强计的输出信号与抽运光功率近似成比例环节.本文为分析SERF耦合磁强计中抽运光功率波动引起的惯性测量误差提供了精确的模型,为后续进行抽运光功率抑制提供了理论支持.The spin exchange relaxation-free(SERF)atomic comagnetometer is a highly sensitive device designed to measure rotation rates with extreme precision.The ability of the proposed method to suppress disturbances from external magnetic fields makes it ideal for various applications,particularly in long-term navigation systems where accuracy and stability are paramount.Beyond navigation,SERF comagnetometers are valuable tools for geophysics and geological exploration,offering reliable tools for high-precision measurements.They also play a crucial role in fundamental physics research,including testing Lorentz symmetry and charge–parity–time(CPT)symmetry,which are essential for understanding potential deviations from standard physical theories.A significant challenge in the SERF comagnetometers performance is power errors in optical pumping systems,which affect two critical operational aspects:scale factor and zero-bias stability.The scale factor determines the relationship between the input signal and the comagnetometer output,whereas zero-bias stability refers to the system’s long-term stability in the absence of an input signal.Although previous research has focused primarily on how power errors affect the scale factor,their effect on zero-bias stability remains underexplored,yet it is crucial for applications that require sustained precision.To address this gap,this study simplified the nonlinear dynamics of the K–Rb–^(21)Ne SERF comagnetometer into a linear time-invariant system using Taylor expansion.This simplification helps analyze the system response to power errors.The study then develops a frequency response model of the optical pumping system’s power utilizing the state space method to predict how power fluctuations affect the system output.This model is an important step toward understanding how power errors propagate within a comagnetometer.An experiment was conducted to validate the derived frequency response model,where a sinusoidal wave with a peak power of 2 milliwatts was superimposed on a
关 键 词:SERF 耦合磁强计 惯性测量 频率响应 光功率误差
分 类 号:TN249[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.14.248.121