检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡楷雄 宋远航 周勇[1] 李卫东 HU Kaixiong;SONG Yuanhang;ZHOU Yong;LI Weidong(School of Transportation and Logistics Engineering,Wuhan University of Technology,Wuhan,430063;School of Mechanical Engineering,Shanghai University of Technology,Shanghai,200093)
机构地区:[1]武汉理工大学交通与物流工程学院,武汉430063 [2]上海理工大学机械工程学院,上海200093
出 处:《中国机械工程》2025年第1期133-140,共8页China Mechanical Engineering
基 金:国家自然科学基金(51975444)。
摘 要:为提高机器人在混杂场景中抓取被遮挡目标物体的成功率和效率,提出一种基于深度强化学习的“推动”和“抓取”协同推抓策略。该策略利用两个深度Q网络,以RGB-D图像为输入来确定推动或抓取动作,并通过推动改变物体排列以优化抓取条件。该网络使用“抓推抓”三阶段模型训练方法显著提高了抓取能力。基于图像形态处理的方法识别并过滤低质量抓取动作,从而提高成功率和效率。实验结果表明,该方法有效提高了目标物体的抓取成功率和效率。To improve the success rate and efficiency of robotic grasping for occluded target objects in cluttered scenes,a collaborative push-grasp strategy was proposed based on deep reinforcement learning.The strategy employed 2 deep Q networks and used RGB-D images as inputs to determine push or grasp actions,which optimized object arrangement for better grasping conditions.A“grab-push-grab”three-stage training method was introduced in the model to enhance grasping capabilities significantly.An image morphology-based assessment method effectively identified and filtered low-quality grasp actions to increase successful rates and efficiency.Experimental results confirm that this method significantly enhances the successful rate and efficiency of grasping target objects.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49