检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:唐科 TANG Ke(Chengdu College of University of Electronic Science and Technology of China,Chengdu 610017,China)
出 处:《计算机应用文摘》2025年第3期144-146,共3页
摘 要:随着网络安全问题的日益严峻,作为保障网络安全的重要手段之一,网络流量异常检测受到了广泛关注。基于统计和机器学习的传统网络流量异常检测方法在处理复杂网络环境时存在诸多局限性,因此文章提出了一种基于强化学习的网络流量异常检测方法,旨在提高检测的准确性和效率。通过构建强化学习模型,自动学习网络流量的特征和模式,实现了实时、准确的异常检测。With the increasingly severe network security problems,as one of the important means to ensure network security,network traffic anomaly detection has been widely concerned.Traditional network traffic anomaly detection methods such as statistics and machine learning have many limitations when dealing with complex network environments.Therefore,this paper proposes a network traffic anomaly detection method based on reinforcement learning to improve the accuracy and efficiency of detection.By building a reinforcement learning model,the characteristics and patterns of network traffic are automatically learned to achieve real-time and accurate anomaly detection.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.213.240