检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李帅 王志飞 李樊 杜呈欣 王浩东 杨博璇 LI Shuai;WANG Zhi-fei;LI Fan;DU Cheng-xin;WANG Hao-dong;YANG Bo-xuan(Institute of Electronic Computing Technology,China Academy of Railway Sciences,Beijing 100081,China)
机构地区:[1]中国铁道科学研究院集团有限公司电子计算技术研究所,北京100081
出 处:《科学技术与工程》2025年第2期773-779,共7页Science Technology and Engineering
基 金:国家自然科学基金(U21A20516);中国铁道科学研究院重点基金(2023YJ129)。
摘 要:为高效识别列车车门的开关状态,并据此控制站台门的同步开关,提出了一种基于轻量级MobileNet网络和机器视觉的图像识别方法,实现高速铁路站台门与列车门的联动控制。在北京南站收集大量列车车门的图像资料,经过预处理后作为模型训练和测试的数据集,再利用二元交叉熵损失函数和Adam优化算法对构建的网络进行训练和优化,最终实现对车门状态的高效精准识别。验证结果表明:对列车开关门动作的识别准确率达到95%以上,识别时间控制在400 ms以内,均能满足当前行业应用需求,极大提高站台门系统的自动化和智能化水平。To efficiently identify the opening and closing status of train doors and control the synchronous opening and closing of platform doors,a lightweight MobileNet network and machine vision based image recognition method was proposed to achieve linkage control between high-speed railway platform doors and train doors.A large dataset of train door images was collected from Beijing South Station and preprocessed to serve as the training and testing dataset for the model.The constructed network was trained and optimized using a binary cross-entropy loss function and the Adam optimization algorithm to achieve efficient and accurate recognition of door status.Validation results demonstrate an accuracy rate of over 95%in recognizing train door actions,with recognition time kept within 400 milliseconds.These results meet the current industry application requirements and greatly enhance the automation and intelligence level of the platform door system.
分 类 号:U216.3[交通运输工程—道路与铁道工程] TH122[机械工程—机械设计及理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.241.210