检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马佳宁 胡尘翰 乔晓梦 包婕[1] 胡春洪[1] 赵泽宇 王希明[1] MA Jianing;HU Chenhan;QIAO Xiaomeng;BAO Jie;HU Chunhong;ZHAO Zeyu;WANG Ximing(Department of Radiology,the First Affiliated Hospital of Soochow University,Suzhou 215006,China)
机构地区:[1]苏州大学附属第一医院放射科,江苏苏州215006
出 处:《中国介入影像与治疗学》2025年第1期47-51,共5页Chinese Journal of Interventional Imaging and Therapy
基 金:苏州市医疗卫生科技创新项目(SKY2022003);苏州市“科教兴卫”青年科技项目(KJXW202306);苏州大学附属第一医院自然科学基金博学培育计划项目(BXQN2023029);江苏省科教提升工程项目(JSDW202242)。
摘 要:目的 评估双参数MRI(bpMRI)影像组学预测根治性切除术(RP)后前列腺癌(PCa)Gleason评分(GS)升级的价值。方法 回顾性分析344例接受RP的PCa患者,按7∶3比例将其分为训练集(n=241)与测试集(n=103);基于术前bpMRI分别构建T2WI、弥散加权成像(DWI)及表观弥散系数(ADC)图影像组学标签,利用逻辑回归(LR)算法建立bpMRI影像组学模型。以单因素及多因素LR分析筛选PCa术后GS升级的独立危险因素并构建临床模型,以之联合bpMRI影像组学模型构建临床-影像组学联合模型。绘制受试者工作特征曲线,计算曲线下面积(AUC),评估各模型预测PCa术后GS升级的效能。结果 术前前列腺影像报告和数据系统(PI-RADS)评分升高及穿刺Gleason分级分组(GG)降低均为PCa术后GS升级的独立危险因素(P均<0.05)。bpMRI影像组学模型与临床-影像组学联合模型预测PCa术后GS升级的AUC均高于单序列影像组学标签及临床模型(P均<0.05),而二者之间差异无统计学意义(P>0.05)。临床-影像组学联合模型预测术前不同穿刺Gleason GG PCa术后GS升级的效能良好,其在训练集的AUC为0.835~0.949,在测试集为0.803~0.948。结论 bpMRI影像组学可有效预测PCa术后GS升级。Objective To evaluate the value of biparametric MRI(bpMRI)radiomics for predicting postoperation Gleason score(GS)upgrade of prostate cancer(PCa).Methods Totally 344 PCa patients who underwent radical prostatectomy(RP)were retrospectively enrolled and divided into training set(n=241)and test set(n=103)at a ratio of 7∶3.T2WI,diffusion weighted imaging(DWI)and apparent diffusion coefficient(ADC)map radiomics signatures were constructed based on preoperative bpMRI,respectively,then logistic regression(LR)algorithm was used to establish bpMRI radiomics model.Univariate and multivariate logistic regression analyses were performed to screen independent risk factors for postoperation GS upgrade of PCa,and a clinical model was constructed.Then a clinical-radiomics combined model was established based on clinical model and bpMRI radiomics model.Receiver operating characteristic curves were drawn,the area under the curves(AUC)were calculated to evaluate the efficacy of each model for predicting postoperation GS upgrade of PCa.Results Elevated preoperative prostate imaging reporting and data system(PI-RADS)score and reduced biopsy Gleason grade group(GG)were both independent risk factors of postoperation GS upgrade of PCa(both P<0.05).The AUC of bpMRI radiomics model and clinical-radiomics combined model for predicting postoperation GS upgrade of PCa were higher than that of single-sequence radiomics signatures and clinical model(all P<0.05),while no significant difference was found between the former two(P>0.05).The clinical-radiomics combined model demonstrated good efficacy for predicting postoperation GS upgrade of PCa with different biopsy GG before operation,with AUC ranging from 0.835 to 0.949 in training set and 0.803 to 0.948 in test set.Conclusion bpMRI radiomics model could effectively predict postoperation GS upgrade of PCa.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49