检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杜涛 闫建红[1] DU Tao;YAN Jianhong(School of Computer Science and Technology,Taiyuan Normal University,Jinzhong 030619,Shanxi,China)
机构地区:[1]太原师范学院计算机科学与技术学院,山西晋中030619
出 处:《智能计算机与应用》2025年第2期138-143,共6页Intelligent Computer and Applications
基 金:太原师范学院校级研究生教育创新项目(SYYJSYC-2470);山西省研究生精品教学案例项目(2024AL27)。
摘 要:针对传统疾病识别网络参数量大,部署效率低的特点,本文提出一种基于改进MobileNetV2模型的分类模型DI-MobileNet,该模型以轻量化网络MobileNetV2为基模型,基于Inception提出多尺度卷积结构;将空洞卷积嵌入模型中,以更高效的方式提取骶髂关节图像不同尺度特征。采用公共数据集Digital Knee X-ray与私有骶髂关节数据集进行实验验证,实验结果表明DI-MobileNet模型参数量为2.23 M,远低于常规卷积神经网络,在Digital Knee X-ray数据集上准确率达到93.05%,在骶髂关节数据集上准确率达到了97.33%,均高于其他模型,较原模型分别提高了1.4和6.31个百分点。Aiming at the characteristics of sacroiliac joint diseases with large intraclass variation and small interclass variation,a classification model DI-MobileNet is proposed to improve the MobileNetV2 model,which takes the lightweight network MobileNetV2 as the base model,proposes a multi-scale convolution structure based on Inception,and subsequently embeds the null convolution into the model to extract sacroiliac iliac joint images with different scale features.The public dataset Digital Knee X-ray with sacroiliac joint dataset is used for validation.Experiments show that the number of parameters of DI-MobileNet model is 2.23 M,which is much lower than that of conventional convolutional neural network.The accuracy reached 93.05%on the Digital Knee X-ray dataset and 97.33%on the sacroiliac joint dataset,which were both higher than the other models,and improved 1.4 and 6.31 percentage points compared with the original model,respectively.
关 键 词:骶髂关节 INCEPTION 空洞卷积 MobileNetV2
分 类 号:TP391.7[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15