检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:尹兆良 黄于欣 余正涛[1,2] YIN Zhaoliang;HUANG Yuxin;YU Zhengtao(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China;Key Laboratory of Artificial Intelligence in Yunnan Province,Kunming 650500,China;Yunnan Branch of National Computer Network Emergency Response Technical Team/Coordination Center of China,Kunming 650100,China)
机构地区:[1]昆明理工大学信息工程与自动化学院,昆明650500 [2]云南省人工智能重点实验室,昆明650500 [3]国家计算机网络与应急技术处理协调中心云南分中心,昆明650100
出 处:《计算机工程与应用》2025年第3期315-325,共11页Computer Engineering and Applications
基 金:国家自然科学基金(U21B2027);云南省重大科技专项(202302AD080003,202202AD080003)。
摘 要:现有的入侵检测算法集中在模式匹配、阈值分割法和多层感知机等机器学习和以神经网络深度学习方法上,在处理基于签名和异常的入侵时效果显著,但耗时费力。在面对Web入侵场景时,现有方法将检测模式重心放在网络流量分析(NTA)上,对URL携带的负载信息和流量之间的关联语义信息提取不足,异常检测效果有待提升。提出一种无监督算法,名为注意力扩展期望最大化算法(attention expand expectation-maximization algorithm,AE-EM),该算法提取应用层URL中的攻击负载语义,采用Attention机制混合编码网络层流量结构化数据,训练融合多维特征和关联应用层语义的向量作为算法的输入,使用轻量化期望最大化算法估计高斯混合模型的参数,用于网络安全入侵检测的Web入侵检测场景。通过在基线数据集上使用常用的学习算法和消融实验比较,提出的AE-EM算法在Web入侵检测领域准确率和性能上优于传统算法。Existing intrusion detection algorithms focus on machine learning and deep learning methods such as pattern matching,threshold segmentation,and multilayer perceptions,which have shown significant effectiveness in handling intrusion based on signatures and anomalies but are time-consuming and labor-intensive.When facing Web intrusion scenarios,existing methods place the detection emphasis on network traffic analysis(NTA),but they lack the extraction of semantic information related to payload carried by URLs and the flow between traffic,resulting in room for improvement in anomaly detection effectiveness.In this paper,an unsupervised algorithm called attention expand expectation-maximization algorithm(AE-EM)is proposed.This algorithm extracts semantic information of attack payloads in application layer URLs,employs an attention mechanism to blend encoded network layer traffic structured data,trains a fused multidimensional feature and correlated application layer semantic vector as the input of algorithm,utilizes a lightweight expectation maximization algorithm to estimate parameters of Gaussian mixture models,and applies it to Web intrusion detection scenarios in network security intrusion detection.Through comparison with commonly used learning algorithms and ablation experiments,the proposed AE-EM algorithm outperforms traditional algorithms in accuracy and performance in the field of Web intrusion detection.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7