检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘宇辰 Liu Yuchen(Hubei University of Education,Wuhan 430205,China)
出 处:《汽车知识》2025年第1期243-247,共5页AUTOMOTIVE KNOWLEDGE
摘 要:针对目前车辆检测当中存在的误检和漏检的问题,提出一种CA-BiFPN_YOLOv5s车辆检测算法:首先,在主干特征提取网络中加入协调注意力机制(CA)模块,使主干网络在特征提取时关注更重要的信息,从而提升目标检测精度;其次,采用加权双向特征金字塔网络(BiFPN)替换YOLOv5s网络中的PANet,加强模型提取多尺度特征的能力,提高了融合效率。实验表明:CA-BiFPN_YOLOv5s在BIT-Vehicle Dataset上车辆检测的平均精度均值(mAP)达到了94.8%,较YOLOv5s网络提高了2.8%,处理的帧率达到136.9 frame/s,满足实时车辆检测的要求。A CA-BiFPN_YOLOv5s vehicle detection algorithm is proposed to address the issues of false positives and false negatives in current vehicle detection.Firstly,a coordinated attention mechanism(CA)module is added to the backbone feature extraction network to focus on more important information during feature extraction,thereby improving the accuracy of object detection;By using BiFPN which is weighted replace the PANet network of YOLOv5s,the model's ability to extract multi-scale features is enhanced and fusion efficiency is improved.The experiment showed that CA BiFPN_YOLOv5s achieved a mean average precision(mAP)of 94.8%in vehicle detection on the BIT Vehicle Dataset,which is 2.8%higher than the YOLOv5s network.The processing frame rate reached 136.9 frame/s,meeting the requirements of real-time vehicle detection.
关 键 词:车辆检测 YOLOv5s 协调注意力机制 加权双向特征金字塔网络
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222