检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:龚陈博 沈斌 贾奥男 周泽亚 南卓江 陶卫[1] Gong Chenbo;Shen bin;Jia Aonan;Zhou Zeya;Nan Zhuojiang;Tao Wei(School of Sensing Science and Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;Shanghai Institute of Satellite Engineering,Shanghai 200240,China;Shanghai Institute of Aerospace Control Technology,Shanghai 201109,China)
机构地区:[1]上海交通大学感知科学与工程学院,上海200240 [2]上海卫星工程研究所,上海200240 [3]上海航天控制技术研究所,上海201109
出 处:《光学学报》2024年第21期194-205,共12页Acta Optica Sinica
基 金:国家自然科学基金(61927822)。
摘 要:激光三角位移传感器的工作距离增大将导致其灵敏度降低,从而影响其测量精度。通过光束折叠技术可提高测量系统的灵敏度,但引入新的结构单元会使得成像光斑噪声变大。针对上述矛盾,提出一种适用于远距离激光三角位移传感器的光斑去噪方法。首先,以双反射折叠光束为例,建立激光三角位移传感器物方与像方位移关系的表达式,通过灵敏度仿真分析验证光路结构的合理性;其次,采用轻量级自监督网络Zero-Shot Noise2Noise抑制光斑图像噪声,并分析不同噪声水平下算法的去噪效果。实验结果表明:去噪后光斑图像的峰值信噪比为47.89 dB,在1750~2500 mm量程内,测量重复性优于2.64μm。Objective With the continuous development of intelligent manufacturing,laser measurement technology increasingly garners widespread attention and application.As an advanced measurement technique,it gradually becomes an essential tool in various domains,including earth science,environmental monitoring,and engineering measurement,providing efficient and precise data support across diverse application scenarios.Current laser measurement methods mainly encompass interferometry,phase method,time-of-flight method,and triangulation method.As a non-contact measurement method,laser triangulation has the advantages of high accuracy,good stability,fast response speed,and low cost.However,at present,laser triangulation is predominantly applied to small-scale and short-range working scenarios,with low measurement accuracy for long-distance measurements.Extending the measurement range of traditional laser triangulation will reduce measurement sensitivity.By using beam folding technology to increase the image distance,it is possible to improve the measurement sensitivity for long-distance measurements without significantly increasing the size of the sensor.Due to the introduction of new mirror units by beam folding technology,the imaging spot noise increases,which restricts the accuracy of subsequent spot positioning.Therefore,denoising processing is essential before spot positioning.Methods At present,traditional filtering denoising methods such as Gaussian filtering,median filtering,and Lee filtering are characterized by simple logic and high computational efficiency.However,these methods often blur the edges and details in the image while filtering noise and smoothing the image,which can compromise the accuracy of spot positioning.Additionally,these methods require manual adjustment of filtering parameters and exhibit variable effectiveness against complex and unknown types of noise.In recent years,with the rapid development of deep learning,self-supervised denoising networks have been widely studied and applied.These networ
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.195.99