Conformal Composition for Borderline Fractional Sobolev Spaces  

作  者:Nijjwal Karak Pekka Koskela Debanjan Nandi Swadesh Kumar Sahoo 

机构地区:[1]Department of Mathematics,Birla Institute of Technoogy and Science Pilani-Hyderabad Campus,Hyderabad 500078,India [2]Department of Mathematics and Statistics,University of Jyvèaskylèa,P.O.Box 35,FI-40014 Jyvèaskylèa,Finland [3]Faculty of Mathematics and Computer Science,Weizmann Institute of Science,234 Herzl Street,Rehovot 76100,Israel [4]Department of Mathematics,Indian Institute of Technology Indore,Indore 453552,India

出  处:《Acta Mathematica Sinica,English Series》2025年第1期457-471,共15页数学学报(英文版)

基  金:Supported by the Academy of Finland via Centre of Excellence in Analysis and Dynamics Research(Grant No.323960);ISF(Grant No.1149/18)。

摘  要:We establish a pointwise property for homogeneous fractional Sobolev spaces in domains with non-empty boundary,extending a similar result of Koskela–Yang–Zhou.We use this to show that a conformal map from the unit disk onto a simply connected planar domain induces a bounded composition operator from the borderline homogeneous fractional Sobolev space of the domain into the corresponding space of the unit disk.

关 键 词:BESOV Hajlasz–Triebel–Lizorkin hyperbolic CONFORMAL 

分 类 号:O177[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象