检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张小敏 裴城 程小慷[1] 杨雄伟 马存明[4] ZHANG Xiao-min;PEI Cheng;CHENG Xiao-kang;YANG Xiong-wei;MA Cun-ming(Airport College,Civil Aviation Flight University of China,Guanghan 618307,China;Sichuan Provincial Engineering Research Center of Smart Operation and Maintenance of Civil Aviation Airports,Guanghan 618300,China;School of Urban Geology and Engineering,Hebei GEO University,Shijiazhuang 050031,China;Research Center for Wind Engineering,Southwest Jiaotong University,Chengdu 610031,China)
机构地区:[1]中国民用航空飞行学院机场学院,广汉618307 [2]民航机场智慧运营与运维四川省工程研究中心,广汉618300 [3]河北地质大学城市地质与工程学院,石家庄050031 [4]西南交通大学,四川省风工程试验研究中心,成都610031
出 处:《科学技术与工程》2025年第3期1165-1173,共9页Science Technology and Engineering
基 金:中央高校基本科研业务费(J2022-016,24CAFUC10210,PHD2023-024);国家重点研发计划(2022YFC3005301);国家自然科学基金(52078438);河北省自然科学基金(E2023403007)。
摘 要:为研究山区不同山体高度上机场航站楼大跨屋盖的风压分布特性,对机场航站楼屋盖在0、30、60、90 m山体高度上的刚性模型,进行的风洞测压试验,对比分析了不同山体高度对屋盖表面平均风压、脉动风压、脉动风压的非高斯特性、峰值因子以及极值风压的影响。结果表明:山体高度的增加显著增加了屋盖迎风前缘的平均风压与脉动风压系数,也加剧了屋盖前缘流动分离的程度,使得屋盖迎风前缘脉动风压的偏度、峰度以及概率密度函数明显偏离标准高斯分布,表现出强烈的非高斯特性。同时通过Hermite矩模型对峰值因子进行计算发现,屋盖表面大部分测点的峰值因子主要分布在3.5~4范围内,远高于GB 50009—2012的建议值2.5,屋盖前缘的极值风压值也会随山体高度的增加而增大,并且全风向角下屋盖边缘有着类似的变化规律,其中90 m山体高度上屋盖表面最不利极值负压比0 m山体高度上降低了44.9%。研究可为同类型机场航站楼的设计与建造提供有益的建议和参考。To study the wind pressure distribution characteristics of long-span roofs of airport terminals at different mountain heights in mountainous areas,a rigid model wind tunnel pressure measurement test of airport terminals roofs at mountain heights of 0 m,30 m,60 m,and 90 m was conducted to compare and analyze the effects of the heights on the surface mean and pulsating wind pressure,non-Gaussian characteristics of pulsating wind pressure,peak factor,and extreme wind pressure of the roof surface.The results show that the increase in mountain height significantly increases the mean and fluctuating wind pressure coefficient at the windward leading edge of the roof,and also intensifies the degree of flow separation at the leading edge of the roof.This causes the skewness,kurtosis,and probability density function of the fluctuating wind pressure at the windward leading edge of the roof to deviate significantly from the standard Gaussian distribution,exhibiting strong non-Gaussian characteristics.At the same time,the Hermite moment model was used to calculate the peak factor,and it was found that the peak factor of most measuring points on the roof surface was mainly distributed in the range of 3.5~4,which was much higher than the recommended value of 2.5 in GB 50009—2012.The extreme wind pressure value at the front edge of the roof also increased with the increase of the mountain height,and there was a similar variation pattern at the edge of the roof under all wind directions.Among them,the most unfavorable extreme negative pressure on the roof surface at a mountain height of 90m decreased by 44.9%compared to the 0m mountain height.Research can provide useful suggestions and refer-ences for the design and construction of terminals in similar airports.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200