检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:许韬 XU Tao(Department of Intelligent Manufacturing,Fujian Vocational and Technical College of Forestry,Nanping 353000,China)
机构地区:[1]福建林业职业技术学院智能制造系,福建南平353000
出 处:《电声技术》2024年第12期79-81,85,共4页Audio Engineering
摘 要:研究基于独立成分分析(Independent Component Analysis,ICA)的远场语音降噪方法,并深入探讨其优化策略。首先,分析远场语音识别中噪声问题的复杂性,并探讨ICA的基本原理与应用。其次,为克服传统ICA在处理非平稳信号时的局限性,引入梯度下降法进行优化。最后,通过WSJ0-mix数据集进行测试。实验结果表明,优化后的ICA方法在信噪比上显著优于传统方法,可有效提高降噪效果。The far-field speech noise reduction method based on Independent Component Analysis(ICA) is studied,and conducts an in-depth discussion on its optimization strategy.Firstly,the complexity of the noise problem in far-field speech recognition is analyzed,and the basic principles and applications of ICA are discussed.Secondly,in order to overcome the limitations of traditional ICA in processing non-stationary signals,gradient descent method is introduced for optimization.Finally,the WSJ0-mix dataset is tested.The experimental results show that the optimized ICA method is significantly better than the traditional method in terms of signal-to-noise ratio,effectively improving the noise reduction effect.
关 键 词:语音降噪 独立成分分析(ICA) 梯度下降法 非稳态
分 类 号:TP391.42[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7