检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:粟宇霜 李艳[1] 高虹[1] 蒲在春 陈娟 刘梦婷 贺雅勰 何彬 杨琴[1] SU Yushuang;LI Yan;GAO Hong;PU Zaichun;CHEN Juan;LIU Mengting;HE Yaxie;HE Bin;YANG Qin(Sichuan Academy of Medical Science·Sichuan Provincial People’s Hospital,University of Electronic Science and Technology of China,Chengdu,610072,P.R.China;Xindu District People’s Hospital of Chengdu,Chengdu,610500,P.R.China;School of Medicine,University of Electronic Science and Technology of China,Chengdu,611731,P.R.China)
机构地区:[1]四川省医学科学院·四川省人民院(电子科技大学附属医院),成都610072 [2]成都市新都区人民医院,成都610500 [3]电子科技大学医学院,成都611731
出 处:《中国胸心血管外科临床杂志》2025年第2期230-236,共7页Chinese Journal of Clinical Thoracic and Cardiovascular Surgery
基 金:四川省自然科学基金(2022NSFSC0780)。
摘 要:目的系统评价食管癌患者术后吻合口瘘(anastomotic leakage,AL)风险预测模型,为建立和改进模型提供指导。方法计算机检索PubMed、Cochrane Library、EMbase、Web of Science、中华医学期刊全文数据库、维普网、万方、中国生物医学文献数据库以及中国知网发表的关于食管癌术后AL风险预测模型的研究,检索时间为建库至2023年10月1日。采用PROBAST工具评估预测模型研究的质量,采用Stata 15软件对建立模型的预测变量进行Meta分析。结果纳入19篇文献,共构建25个食管癌患者术后AL风险预测模型,7373例患者,受试者工作特征曲线下面积(area under the curve,AUC)为0.670~0.960,其中23个预测模型的预测性能较好(AUC>0.7)。13篇文献进行了模型校准,10篇文献进行内部验证,1篇文献进行外部验证。PROBAST评价结果表明19篇文献均为高偏倚风险。最常见的预测因子包括:低蛋白血症(OR=9.362)、术后呼吸系统并发症(OR=7.427)、切口愈合不良(OR=5.330)、吻合方法(OR=2.965)、术前胸腹部手术史(OR=3.181)、术前合并糖尿病(OR=2.445)、术前合并心血管系统疾病(OR=3.260)、术前新辅助治疗(OR=2.977)、术前呼吸系统疾病(OR=4.744)、手术方式(OR=4.312)、美国麻醉医师协会评分(OR=2.424)等。结论目前食管癌术后AL风险预测模型仍处于研发阶段,总体研究质量有待进一步提升。Objective To systematically evaluate the risk prediction models for anastomotic leakage(AL)in patients with esophageal cancer after surgery.Methods A computer-based search of PubMed,EMbase,Web of Science,Cochrane Library,Chinese Medical Journal Full-text Database,VIP,Wanfang,SinoMed and CNKI was conducted to collect studies on postoperative AL risk prediction model for esophageal cancer from their inception to October 1st,2023.PROBAST tool was employed to evaluate the bias risk and applicability of the model,and Stata 15 software was utilized for meta-analysis.Results A total of 19 literatures were included covering 25 AL risk prediction models and 7373 patients.The area under the receiver operating characteristic curve(AUC)was 0.670-0.960.Among them,23 prediction models had a good prediction performance(AUC>0.7);13 models were tested for calibration of the model;1 model was externally validated,and 10 models were internally validated.Meta-analysis showed that hypoproteinemia(OR=9.362),postoperative pulmonary complications(OR=7.427),poor incision healing(OR=5.330),anastomosis type(OR=2.965),preoperative history of thoracoabdominal surgery(OR=3.181),preoperative diabetes mellitus(OR=2.445),preoperative cardiovascular disease(OR=3.260),preoperative neoadjuvant therapy(OR=2.977),preoperative respiratory disease(OR=4.744),surgery method(OR=4.312),American Society of Anesthesiologists score(OR=2.424)were predictors for AL after esophageal cancer surgery.Conclusion At present,the prediction model of AL risk in patients with esophageal cancer after surgery is in the development stage,and the overall research quality needs to be improved.
关 键 词:食管癌 吻合口瘘 预测模型 系统评价/META分析
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222