肺癌术后肺部并发症风险预测模型的研究进展  

Research progress on risk prediction models of postoperative pulmonary complications after lung cancer surgery

在线阅读下载全文

作  者:邓婷 宋佳美 李金 吴晓燕 吴俐姗 谌绍林 DENG Ting;SONG Jiamei;LI Jin;WU Xiaoyan;WU Lishan;CHEN Shaolin(Nursing Department,Affiliated Hospital of Zunyi Medical University,Zunyi,563000,Guizhou,P.R.China;School of Nursing,Zunyi Medical University,Zunyi,563000,Guizhou,P.R.China;Department of Thoracic Surgery,Affiliated Hospital of Zunyi Medical University,Zunyi,563000,Guizhou,P.R.China)

机构地区:[1]遵义医科大学附属医院护理部,贵州遵义563000 [2]遵义医科大学护理学院,贵州遵义563000 [3]遵义医科大学附属医院胸外科,贵州遵义563000

出  处:《中国胸心血管外科临床杂志》2025年第2期263-269,共7页Chinese Journal of Clinical Thoracic and Cardiovascular Surgery

摘  要:肺癌术后肺部并发症(postoperative pulmonary complications,PPCs)风险预测模型能帮助医护人员识别患者PPCs概率,为临床医护人员快速决策提供依据。本文评估和总结肺癌PPCs风险预测模型的研究现状,从模型类型、构建方法、模型性能、临床应用等方面分析其优势、不足与挑战。发现目前肺癌PPCs风险预测模型对PPCs发生有一定的预测效能,但其在研究设计、临床应用及透明化报告等方面存在一定的不足。建议今后开展大样本、前瞻性和多中心研究,构建多组学预测模型,实现精准预测,促进临床转化应用与推广。Risk prediction models for postoperative pulmonary complications(PPCs)can assist healthcare professionals in assessing the likelihood of PPCs occurring after surgery,thereby supporting rapid decision-making.This study evaluated the merits,limitations,and challenges of these models,focusing on model types,construction methods,performance,and clinical applications.The findings indicate that current risk prediction models for PPCs following lung cancer surgery demonstrate a certain level of predictive effectiveness.However,there are notable deficiencies in study design,clinical implementation,and reporting transparency.Future research should prioritize large-scale,prospective,multi-center studies that utilize multiomics approaches to ensure robust data for accurate predictions,ultimately facilitating clinical translation,adoption,and promotion.

关 键 词:肺癌 术后肺部并发症 风险预测模型 综述 

分 类 号:R734.2[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象