中国数据要素发展水平测度、时空演变及推进路径  

Measurement,Spatiotemporal Evolution,and Advancing Path of China's Data Element Development Level

作  者:吴杰 陈洪昭[1] Wu Jie;Chen Hongzhao(School of Economics,Fujian Normal University,Fuzhou 350117,China)

机构地区:[1]福建师范大学经济学院,福州350117

出  处:《统计与决策》2025年第3期82-87,共6页Statistics & Decision

基  金:国家社会科学基金青年项目(21BJL113);福建省社会科学基金项目(FJ2021B040)。

摘  要:数据要素作为推动数字中国建设的战略资源,评估其发展水平、促进其价值释放具有重要意义。文章基于2013—2022年中国30个省份的面板数据,构建数据要素发展水平评价指标体系,运用熵值法、泰尔指数、莫兰指数等研究方法对中国数据要素发展水平及其时空演变特征进行了测度和分析。研究发现:第一,我国数据要素发展水平持续提升,大致呈现“东强西弱、南强北弱”的格局;第二,中国数据要素发展水平存在较大的区域差异,但总体差异呈缩小趋势,逐渐以各区域内部差异为主;第三,中国数据要素发展水平在空间上具有显著的自相关性,东北、西部地区省份多呈现LL型集聚特征,东中部地区省份则多呈现HH型和LH型集聚特征。As a strategic resource to promote the construction of digital China,it is of great significance to evaluate its development level and promote its value release.Based on the panel data of 30 provinces in China from 2013 to 2022,this paper constructs an evaluation index system for the development level of data elements,and uses entropy method,Theil index,Moran’s index and other research methods to measure and analyze the development level of data elements and their spatiotemporal evolution characteristics in China.The findings go as the following:Firstly,the development level of data elements has steadily improved,showing a pattern of“strong in the east and weak in the west,strong in the south and weak in the north”.Secondly,there are great regional differences in the development level of data elements in China,but the overall differences show a decreasing trend,and gradually dominated by differences within the region.Finally,there is notable spatial autocorrelation in digital element development level,with northeastern and western provinces showing LL-type agglomeration and eastern and central provinces showing HH-type and LH-type agglomeration.

关 键 词:数据要素 时空演变 区域差异 空间分布 数据要素价值 

分 类 号:F270.7[经济管理—企业管理] F49[经济管理—国民经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象