检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:魏盛宇 翟越[1] 赵廿 WEI Shengyu;ZHAI Yue;ZHAO Nian(College of Geological Engineering and Geomatics,Chang'an University,Xi'an 710054,China;School of Architecture,Chang'an University,Xi'an 710061,China)
机构地区:[1]长安大学地质工程与测绘学院,西安710054 [2]长安大学建筑学院,西安710061
出 处:《清华大学学报(自然科学版)》2025年第1期174-185,共12页Journal of Tsinghua University(Science and Technology)
基 金:陕西省联合基金项目(2022KXJ-107)。
摘 要:可靠的脆弱性评估模型及空间分异特性研究有助于提升灾害应急处置能力。针对传统脆弱性评估只考虑基础设施的抵御能力且权重计算方法单一等问题,该文围绕暴露度、敏感性、应对能力将城市基础条件与人的主动应对能力纳入指标体系,构建洪涝脆弱性评估模型,并采用博弈论组合优化主客观权重值。以洪涝风险较高的西安市为例,借助多源数据在1 km栅格尺度中进行模型应用,并通过全局Moran's I和局部空间关联指数(LISA)分析脆弱性空间集聚特征。结果表明:西安市暴雨洪涝脆弱性呈现出显著的自相关与空间分异特性,整体脆弱性评估等级偏低,其主要致脆因子为暴露度较高且应对能力较弱,在高与较高脆弱性等级区间中,敏感应对能力不足致脆型和强综合脆弱型居多。该模型可为城市暴雨洪涝脆弱性的减缓与治理等提供启示和借鉴。[Objective]Extreme precipitation events have increased globally in recent years,leading to more frequent and intense urban flooding that seriously threatens public safety.Reliable models for assessing storm waterlogging vulnerability and studies on spatial differentiation are essential for effective disaster prevention and mitigation.However,traditional models often face two main limitations.First,traditional models frequently overlook human adaptive responses to flooding and rely on single-weight calculation methods,reducing the accuracy of their insights.Second,traditional models generally apply to larger scales,such as cities or regions,and fail to capture smaller-scale spatial differences in vulnerability.This study introduces a refined storm waterlogging vulnerability assessment model that includes exposure,sensitivity,and coping capacity.The model allows researchers to reveal the spatial clustering of storm waterlogging vulnerability in more detail,providing more in-depth insights into areas most prone to flooding.[Methods]To establish a comprehensive assessment system,this study combined city-specific conditions with human adaptive responses.Nine key indicators,such as annual rainfall,were selected to capture urban-specific vulnerability.Subjective weights were assigned based on an improved expert scoring method,effectively incorporating expert insights.To enhance objectivity,the entropy method was used to calculate objective weights.Then,these subjective and objective weights were combined and optimized using the Nash equilibrium equation to achieve a balanced vulnerability evaluation.Multisource data and ArcGIS software enabled the visualization of storm waterlogging vulnerability on a 1 km grid scale in Xi'an.Global Moran's I and local indicators of spatial association(LISA)score clustering were used to analyze spatial patterns in storm waterlogging vulnerability,revealing clusters and trends across the city.In addition,a vulnerability triangle classified vulnerability levels into eight distinct types,h
分 类 号:X43[环境科学与工程—灾害防治]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222