牵引变流器直流环节有源功率解耦控制策略研究  

Decoupling control strategy of active power in DC link of traction converter

在线阅读下载全文

作  者:丁颢 曾一鸣 李卓鑫 向超群[1] 成庶[1] 范子寅 DING Hao;ZENG Yiming;LI Zhuoxin;XIANG Chaoqun;CHENG Shu;FAN Ziyin(School of Traffic and Transportation,Central South University,Changsha 410075,China;Locomotive and Rolling Stock Research Institute,China Academy of Railway Sciences Group Co.,Ltd.,Beijing 100081,China)

机构地区:[1]中南大学交通运输工程学院,湖南长沙410075 [2]中国铁道科学研究院集团有限公司机车车辆研究所,北京100081

出  处:《铁道科学与工程学报》2025年第1期344-356,共13页Journal of Railway Science and Engineering

基  金:中国国家铁路集团有限公司科技研究开发计划资助项目(P2023J004)。

摘  要:为解决高速列车牵引变流器直流环节LC谐振回路体积大、质量重,造成整体功率密度降低,不利于轻量化等问题,引入有源功率解耦回路代替LC谐振抑制母线电压的二次纹波。为适应大功率低开关频率的轨道交通应用场景,选择Buck斩波有源功率解耦拓扑作为LC谐振回路的替代方案。通过粒子群优化(particle swarm optimization,PSO)算法设计基于CR400AF高速动车组的拓扑参数,使解耦电容容值,解耦电感感值和4次脉动幅值尽量接近群体最优值,据此建立多目标优化函数,得到最优参数。针对该解耦电路提出了基于重复控制的功率解耦策略,以解耦电容电压为控制目标,包括二阶广义积分器(second order generalized integrator,SOGI)二次脉动电流提取、直流分量跟踪、交流分量跟踪以及脉宽调制(pulse width modulation,PWM)4个部分。研究结果表明:Buck斩波有源功率解耦拓扑,相比LC谐振回路减少28.3%,相比增大支撑电容拓扑减少5%,符合直流环节轻量化目标,在直流电压纹波方面,相比LC谐振回路增大约90V,相比增大支撑电容减少35V,约为3.47%,符合少于5%的规定。同时,对比负载变化50%响应时间,Buck斩波有源功率解耦用时最少,比LC谐振回路减少34.8%,说明动态性能得到了提升。Buck斩波有源功率解耦不仅可以有效滤除二次脉动,稳定直流电压输出,使网侧电流波形更加接近于正弦波,并在低带宽条件下实现高精度的指令跟踪,提高动态性能。研究结果可为直流环节轻量化的解耦拓扑选型与控制策略优化提供参考。In order to solve the large volume and excessive weight of the LC resonant circuit in the DC link of the high-speed train traction inverter,which leads to the loss of the overall power density,not conducive to lightweight.An active power decoupling circuit was introduced to replace the LC resonant circuit to suppress the secondary ripple of the bus voltage.To adapt to the application scenarios of high-power and low switching frequency rail transit,Buck active power decoupling topology was selected as an alternative solution to LC resonant circuit.By using the particle swarm optimization(PSO)algorithm to design parameters based on CR400AF high speed EMU,the decoupling capacitance value,decoupling inductance value.Fourth pulse amplitude were as close as possible to the group optimal value.Based on the case,a multi-objective optimization function was established to obtain the optimal parameters.And a power decoupling strategy based on repetitive control was proposed for the decoupling circuit,with decoupling capacitor voltage as the control objective,including four parts:second order generalized integrator secondary pulsation(SOGI)current extraction,DC component tracking,AC component tracking,and pulse width modulation(PWM).The research results show that the Buck chopper active power decoupling topology reduces the power consumption by 28.3%compared to the LC resonant circuit and 5%compared to increasing the support capacitance topology,which meets the lightweight goal of the DC link.In terms of DC voltage ripple,it increases by about 90 V compared to the LC resonant circuit and decreases by 35 V compared to increasing the support capacitance,which is about 3.47%,meeting the requirement of less than 5%.Meanwhile,compared to the response time of 50%load change,Buck chopper active power decoupling takes the least time,which is 34.8%less than LC resonant circuit,indicating an improvement in dynamic performance.Buck chopper active power decoupling can effectively filter out secondary pulsation,stabilize DC voltage outpu

关 键 词:牵引变流器 轻量化 有源功率解耦 重复控制 Buck斩波拓扑 

分 类 号:U264[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象