检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐海洋 邓文文 李彤 XU Haiyang;DENG Wenwen;LI Tong
机构地区:[1]中国航空工业集团公司西安航空计算技术研究所,陕西西安710065
出 处:《信息技术与信息化》2025年第1期102-105,共4页Information Technology and Informatization
摘 要:传统的时间序列预测模型具有较好的稳定性和可解释性,但也存在一些问题,一方面是对于非线性时间序列的适应能力不足,另一方面是对于具有季节性变化的时间序列的适应能力不足,需要通过差分操作消除时间序列的趋势和季节性,但这种方法存在一定的局限性。针对以上问题,文章研究并提出了基于ARIMA/BPNN的时间序列数据混合预测模型,对数据进行短期预测,使用中国的进口总值当期值数据集来评估所提出的模型。所提出的模型联合用于线性和非线性模型,旨在捕获时间序列数据中的不同关系模式。混合预测模型能够帮助用户更好地理解市场和业务需求,从而做出更准确的决策,减少决策带来的风险和成本,提高资源利用效率。
关 键 词:深度学习 卷积神经网络 时间序列数据 短期预测 预测模型
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.22.217.190