检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李宗柱 宋绍剑[1] 李修华[1] LI Zongzhu;SONG Shaojian;LI Xiuhua(School of Electrical Engineering,Guangxi University,Nanning 530004,China)
出 处:《植物保护》2025年第1期111-122,共12页Plant Protection
基 金:国家自然科学基金(31760342)。
摘 要:虫害是影响农作物产量的重要因素之一,害虫种类的精确识别已成为农业领域目标检测的重要研究课题。但由于害虫样本存在类间相似,标注的害虫样本尺度多样、背景复杂和类别分布不均匀等问题,使害虫的精准识别面临严峻挑战。为此,本文提出一种基于YOLOv5改进模型的农业害虫检测新方法。首先,引入了一种新型特征金字塔(feature pyramid attention,FPA)模块,用于替换基准YOLOv5主干网络的空间金字塔池化(spatial pyramid pooling,SPP)模块。该模块能够进行不同尺度的特征提取,并将提取的特征拼接作为注意力机制指导网络进行细粒度特征提取。然后,在YOLOv5主干网络输出层的特征提取过程中插入全局注意力上采样(global attention upsampling,GAU)模块,用高级特征的全局信息来指导模型从复杂背景中提取特征,使得模型能够从低级特征中更精准地提取类别定位细节特征,进而提高模型的识别精度。本文在IP102害虫数据集上进行算法验证,结果表明,与现有的多尺度注意学习网络(multiscale attention learning network,MS-ALN)相比准确率提升了3.21百分点。Pest attack is a critical factor that affects agricultural crop yields,and the accurate identification of pest species has become an important research topic in the field of target detection in agriculture.However,the accurate identification of pests still face critical challenges due to the issues,such as complex backgrounds,interclass similarities,multiple scales of annotated samples,and uneven distributions among different category samples.Therefore,this paper proposed a new method for detecting crop pests based on an improved YOLOv5 model.First,we introduced a feature pyramid attention(FPA)module to replace the spatial pyramid pooling(SPP)module in the backbone of YOLOv5,which enhances the network performance in extracting features of different scales and concatenates the extracted features as an attention mechanism to guide the network to extract fine-grained features.Then,a global attention upsampling(GAU)module was inserted into the output layers of the backbone to guide the model to extract features from complex backgrounds.Experiments conducted on the IP102 dataset showed that the accuracy was improved by 3.21 percent point compared to the multiscale attention learning network(MS-ALN),which achieved state-of-the-art performance on the IP102 dataset.
关 键 词:害虫识别 YOLOv5 数据增强 注意力机制 多尺度特征提取
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63