检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李世林 王李东[2] 刘晓阳 马光文[1] 黄炜斌[1] 朱燕梅 LI Shilin;WANG Lidong;LIU Xiaoyang;MA Guangwen;HUANG Weibin;ZHU Yanmei(College of Water Resources and Hydropower,Sichuan University,Chengdu 610065,Sichuan,China;China Yangtze Power Co.,Ltd.,Yichang 443000,Hubei,China)
机构地区:[1]四川大学水利水电学院,四川成都610065 [2]中国长江电力股份有限公司,湖北宜昌443000
出 处:《水利水电技术(中英文)》2025年第1期193-202,共10页Water Resources and Hydropower Engineering
基 金:中国长江电力股份有限公司项目“关联水电站发电能力及蓄能变化趋势研究”(2423020031);国家重点研发计划(2018YFB0905204)。
摘 要:【目的】准确的径流式水电站出力预测对于拟定发电调度计划、电力保供策略至关重要。针对径流式水电站发电出力随机性强,直接预测精度低等特点,提出一种基于自适应变分模态分解和时间卷积网络(TCN)的组合预测模型。【方法】首先利用鲸鱼群算法(WOA)对变分模态分解(VMD)的参数进行优选,实现原始出力序列的最优自适应分解,然后对分解后的每个分量分别建立TCN模型进行趋势预测,最后将所得结果重构得到最终预测结果。【结果】结果显示:与其他模型相比,所提模型在相同条件下预测效果更优。在非汛期,所提模型决定系数R^(2)为97.08%、平均相对误差MRE为3.68%、均方根误差RMSE为10.05 MW;在汛期,所提模型决定系数R^(2)为93.71%、平均相对误差MRE为8.09%、均方根误差RMSE为32.96 MW。【结论】结果表明:(1)WOA-VMD方法能够有效地提取径流式水电站出力序列的特征,降低自身数据的不稳定性对预测结果造成的影响;(2)相比于VMD-TCN、TCN、LSTM、RNN、BP五种模型,所提出的WOA-VMD-TCN预测模型能有效提升水电站出力预测精度,为径流式水电站短期出力预测提供了一种新的、有效的建模思路。[Objective]Accurate power prediction of a runoff hydropower station is crucial for formulating generation scheduling plans and ensuring a reliable power supply strategy.Considering the strong randomness in the generation output of runoff hydropower stations and the low accuracy of direct prediction,a combined prediction model based on Adaptive Variational Mode Decomposition(VMD)and Temporal Convolutional Network(TCN)was proposed.[Methods]Initially,the Whale Optimization Algorithm(WOA)is employed to optimize the parameters of Variational Mode Decomposition(VMD),achieving optimal adaptive decomposition of the original output sequence.Subsequently,TCN model is individually established for trend prediction of each decomposed component.Finally,the obtained result are reconstructed to obtain the final prediction.[Results]The result shows that,compares to other models,the model established has varying degrees of improvement in prediction performance under the same conditions.[Conclusion]The result indicates:(1)The WOA-VMD method can effectively extract the characteristics of the output sequence of a runoff-type hydropower station and reduce the influence of the instability of its own data on the prediction result.(2)Compared to the five models of VMD-TCN,TCN,LSTM,RNN and BP,the proposed WOA-VMD-TCN prediction model can effectively improve the prediction accuracy of hydropower station power,providing a new and effective modeling approach for power prediction of runoff hydropower stations.
关 键 词:径流式水电站 功率预测 鲸鱼群算法 变分模态分解 时间卷积网络 影响因素
分 类 号:TV747[水利工程—水利水电工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.149.10.88