检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李先旺[1] 刘赛虎 黄忠祥 章霞东 Li Xianwang;Liu Saihu;Huang Zhongxiang;Zhang Xiadong(School of Mechanical Engineering,Guangxi University,Nanning,530004,China;Guangxi Agricultural Machinery Research Institute Co.,Ltd.,Nanning,530007,China)
机构地区:[1]广西大学机械工程学院,南宁市530004 [2]广西农业机械研究院有限公司,南宁市530007
出 处:《中国农机化学报》2025年第2期319-325,352,共8页Journal of Chinese Agricultural Mechanization
基 金:广西重点研发计划项目(桂科AB18281016)。
摘 要:针对谷物收割机械维修实体识别过程中存在上下文语义特征缺失、长距离依赖信息不充足、实体复杂度较高等问题,提出一种引入注意力机制特征融合的谷物收割机械维修知识命名实体识别模型XLNet—BiLSTM—AFF—CRF。该模型采用基于Transformer—XL的广义自回归XLNet预训练模型作为嵌入层提取字向量;然后使用双向长短时记忆网络(BiLSTM)获取上下文语义特征;利用注意力特征融合AFF将XLNet层输出与BiLSTM层输出进行组合,增强序列的语义信息;最后输入条件随机场CRF模型学习标注约束规则生成全局最优序列。在创建的维修语料库上展开试验,结果表明:所提模型的精确率、召回率和F1值分别为98.4%、97.6%和97.9%,均高于对比模型,验证所提模型的有效性。Aiming at the problems of lack of context semantic features,insufficient long-distance dependence information and high entity complexity in the process of entity recognition of grain harvesting machinery maintenance knowledge,a named entity recognition model XLNet—BiLSTM—AFF—CRF for grain harvesting machinery maintenance knowledge based on attention mechanism feature fusion is proposed.Firstly,the generalized autoregressive XLNet pre-trained model based on Transformer—XL is used as the embedding layer to extract word vectors.Secondly,the Bidirectional Long Short-Term Memory(BiLSTM)is used to obtain contextual semantic features.Thirdly,the attentional feature fusion(AFF)is used to combine the output of the XLNet layer with the output of the BiLSTM layer to enrich the semantic information of the sequence.Finally,the conditional random field(CRF)model is input to learn the annotation constraint rules to generate the global optimal sequence.Experiments are carried out on the created maintenance corpus.The experimental results show that the accuracy rate,recall rate and F1 value of the proposed model in this paper are 98.4%,97.6%and 97.9%,respectively,which are higher than those of the comparison model,verifying the effectiveness of the model in this essay.
关 键 词:谷物收割机械 维修 命名实体识别 注意力机制 广义自回归预训练语言模型(XLNet)
分 类 号:S23[农业科学—农业机械化工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.34.228