检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘旭超 闫增峰[2] LIU Xuchao;YAN Zengfeng(Xi’an Siyuan University,Xi’an 710038,China;Xi’an University of Architecture and Technology,Xi’an 710055,China)
机构地区:[1]西安思源学院,西安710038 [2]西安建筑科技大学,西安710055
出 处:《自动化与仪器仪表》2024年第12期28-32,共5页Automation & Instrumentation
基 金:2021年度陕西省教育厅科学研究计划项目《文化交融视角下西安回坊街区清真寺空间形制演变研究》(21JK0852)。
摘 要:本研究针对绿色建筑多目标节能优化问题,致力于同时实现节能效果的最大化和节能投入成本的最小化。为达到此目标,研究设计了一个融合了遗传算法的多目标节能优化模型,并通过引入粒子群算法改善求解过程。结果表明,研究设计模型求得最佳组合方案F,其增量成本为84.23元/m^(2),增量效益为1226.41元/m^(2),节能设计效率高达14.61。综上,研究模型在绿色建筑节能方案选择中显示出了卓越的性能。特别是方案F和方案H不仅成本效益更佳,长期节能效率也更高,适用于节能投资收益要求不同的项目。此外,对基准收益率的敏感性分析进一步证明了模型在不同经济情景下具有可靠的决策支持能力。本研究为投资者提供了科学的节能决策参考,有助于推动绿色建筑行业实现节能与成本双重优化的目标。This study focuses on the multi-objective energy-saving optimization problem of green buildings,aiming to achieve the maximization of energy-saving effects and the minimization of energy-saving investment costs simultaneously.To achieve this goal,a multi-objective energy-saving optimization model integrating genetic algorithm was studied and designed,and the solving process was improved by introducing particle swarm optimization algorithm.The results show that the optimal combination scheme F obtained from the research and design model has an incremental cost of 84.23 yuan/m^(2),an incremental benefit of 1226.41 yuan/m^(2),and an energy-saving design efficiency of up to 14.61.In summary,the research model has shown excellent performance in the selection of energy-saving solutions for green buildings.Especially Scheme F and Scheme H not only have better energy-saving efficiency but also higher intellectual efficiency,which are suitable for projects with different requirements for energy-saving investment returns.In addition,the sensitivity analysis of the benchmark return further proves that the model has reliable decision support ability in different economic scenarios.This study provides investors with scientific energy-saving decision-making references,which helps to promote the green building industry to achieve the dual optimization goals of energy conservation and cost.
关 键 词:绿色建筑 遗传算法 多目标策略 节能方案 粒子群算法
分 类 号:TU201.5[建筑科学—建筑设计及理论] TP29[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7