机构地区:[1]Department of Orthopedic Surgery,The Second Hospital of Jilin University,Changchun 130000,China [2]Department of Dermatology,The Second Hospital of Jilin University,Changchun 130000,China
出 处:《Bio-Design and Manufacturing》2025年第1期36-54,I0013-I0017,共24页生物设计与制造(英文)
基 金:supported bythe National Natural Science Foundation of China(Nos.U23A20523,82272504,and 82072456);the Department of Science and Technology of Jilin Province,China(Nos.20210101439JC,20210101321JC,20220204119YY,202201ZYTS131,202201ZYTS129,20230204114YY,YDZJ202201ZYTS505,and YDZJ202301ZYTS076);the Special Program for Science and Technology Personnel of Changchun(No.ZKICKJJ2023015);the Key Training Plan for Outstanding Youth of Jilin University(No.419070623036);the Research Fund of the First Hospital of Jilin University(No.2021-zl-01);the Graduate Innovation Fund of Jilin University(No.2024CX125);the Foun-dation of National Center for Translational Medicine(Shanghai)SHU Branch,China(No.SUITM-202405).
摘 要:The pore structure of porous scaffolds plays a crucial role in bone repair.The prevalent bone implant structure in clinical practice is the traditional cubic structure.However,the traditional cubic structure exhibits sharp edges and junctions that are not conducive to cell adhesion or growth.In this study,a double gyroid(DG)Ti6Al4V scaffold based on a triply periodic minimal surface(TPMS)structure was devised,and the osseointegration performance of DG structural scaffolds with varying porosities was investigated.Compression tests revealed that the elastic modulus and compressive strength of DG structural scaffolds were sufficient for orthopedic implants.In vitro cellular experiments demonstrated that the DG structure significantly enhanced cell proliferation,vascularization,and osteogenic differentiation compared to the cubic structure.The DG structure with 55%porosity exhibited the most favorable outcomes.In vivo experiments in rabbits further demonstrated that DG scaffolds could promote neovascularization and bone regeneration and maturation;those with 55%porosity performed best.Comparing the surface area,specific surface area per unit volume,and internal flow distribution characteristics of gyroid and DG structure scaffolds,the latter are more conducive to cell adhesion and growth within scaffolds.This study underscored the potential of DG scaffolds based on the TPMS structure in optimizing the pore structure design of titanium scaffolds,inducing angiogenesis,and advancing the clinical application of titanium scaffolds for repairing bone defects.多孔支架的孔结构在骨修复过程中发挥重要作用。目前临床上常用的骨植入物结构为传统的立方体结构。然而,传统立方体结构具有尖锐边缘或结点,不利于细胞黏附和生长。本研究设计了一种基于三周期极小曲面(TPMS)结构的双陀螺(DG)钛合金骨支架,并探讨了不同孔隙率DG结构支架的骨整合性能。压缩试验表明,DG结构支架的弹性模量和压缩强度足以满足骨科植入物的需求。体外细胞试验表明,与立方体结构相比,DG结构可以显著促进细胞增殖、成血管分化、成骨分化,且孔隙率为55%的DG结构支架表现最好。家兔体内试验进一步证明,DG支架可以促进新血管形成和骨组织的再生和成熟,且孔隙率为55%的DG支架表现最优。此外,通过比较单陀螺和DG结构支架的表面积、单位体积比表面积和内部流动分布特征发现,后者更有利于细胞黏附和生长。本研究强调了基于TPMS结构的DG支架在优化钛支架孔隙结构设计、诱导血管生成及骨缺损修复临床应用中的潜力。
关 键 词:Double gyroid Triply periodic minimal surface OSSEOINTEGRATION ANGIOGENESIS
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...