改进立体匹配算法的输电线路弧垂测量方法  

Transmission line sag measurement method based on improved stereo matching algorithm

在线阅读下载全文

作  者:姜岚[1,2] 黄荥 赵阳 叶卿辰 陶文心 Jiang Lan;Huang Xing;Zhao Yang;Ye Qingchen;Tao Wenxin(College of Electrical Engineering and New Energy,China Three Gorges University,Hubei Yichang,443002,China;Hubei Provincial Engineering Technology Research Center for Power Transmission Line,Hubei Yichang,443002,China;State Grid Yichang High-tech Zone Power Supply Company,Hubei Yichang,443002,China)

机构地区:[1]三峡大学电气与新能源学院,湖北宜昌443002 [2]湖北省输电线路工程技术研究中心,湖北宜昌443002 [3]国网宜昌市高新区供电公司,湖北宜昌443002

出  处:《机械设计与制造工程》2025年第2期68-74,共7页Machine Design and Manufacturing Engineering

基  金:国家电网公司总部科技项目(5200-202256088A-1-1-ZN)。

摘  要:针对目前弧垂观测效率较低、成本高的问题,提出一种基于改进立体匹配算法的输电线路弧垂测量方法。该方法首先综合利用多种特征的代价融合策略,结合Census变换、HSL测度以及梯度信息,构建了一种更加全面的相似性度量函数,从而提高了初始代价计算的准确性;其次在代价聚合阶段,选择引导滤波技术作为代价聚合方式更好地实现了代价聚合;最后利用成像模型获取边缘点三维坐标并结合曲线拟合算法,实现弧垂测量。实验结果表明,所提方法在弧垂测量过程中平均误差为1.41%,具有良好的测量精度。Aiming at the low efficiency and high cost of sag observation,this paper proposes a sag observation method based on improved stereo matching algorithm.This method comprehensively utilizes the cost fusion strategy of multiple features,combined with Census transform,HSL measure and gradient information to construct a more comprehensive similarity measure function,thus it enhances the accuracy of initial cost calculation.In the cost aggregation stage,the guided filtering technology is selected as the cost aggregation method to achieve better cost aggregation.Finally,the three-dimensional coordinates of the edge points are obtained by using the imaging model and combined with the curve fitting algorithm to realize the sag measurement.The experimental results show that the average error of the proposed method in the sag measurement process is 1.41%,which has good measurement accuracy.

关 键 词:输电线路 立体视觉 半全局匹配 视差图优化 弧垂测量 

分 类 号:TM751[电气工程—电力系统及自动化] TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象