基于EE-YOLOv8s的多场景火灾迹象检测算法  

A multi-scene fire sign detection algorithm based on EE-YOLOv8s

作  者:崔克彬[1,2] 耿佳昌 CUI Kebin;GENG Jiachang(Department of Computer Science,North China Electric Power University,Baoding Hebei 071003,China;Engineering Research Center of Intelligent Computing for Complex Energy Systems,Ministry of Education,Baoding Hebei 071003,China)

机构地区:[1]华北电力大学计算机系,河北保定071003 [2]复杂能源系统智能计算教育部工程研究中心,河北保定071003

出  处:《图学学报》2025年第1期13-27,共15页Journal of Graphics

摘  要:针对目前烟火场景检测中,光照变化、烟火动态性、复杂背景、目标过小等干扰因素导致的火灾迹象目标误检和漏检的问题,提出一种YOLOv8s改进模型EE-YOLOv8s。设计MBConv-Block卷积模块融入YOLOv8的Backbone部分,实现EfficientNetEasy特征提取网络,保证模型轻量化的同时,优化图像特征提取;引入大型可分离核注意力机制LSKA改进SPPELAN模块,将空间金字塔部分改进为SPP_LSKA_ELAN,充分捕获大范围内的空间细节信息,在复杂多变的火灾场景中提取更全面的特征,从而区分目标与相似物体的差异;Neck部分引入可变形卷积DCN和跨空间高效多尺度注意力EMA,实现C2f_DCN_EMA可变形卷积校准模块,增强对烟火目标边缘轮廓变化的适应能力,促进特征的融合与校准,突出目标特征;在Head部分增设携带有轻量级、无参注意力机制SimAM的小目标检测头,并重新规划检测头通道数,加强多尺寸目标表征能力的同时,降低冗余以提高参数有效利用率。实验结果表明,改进后的EE-YOLOv8s网络模型相较于原模型,其参数量减少了13.6%,准确率提升了6.8%,召回率提升了7.3%,mAP提升了5.4%,保证检测速度的同时,提升了火灾迹象目标的检测性能。To mitigate the current issues of spurious and missed detections of fire signs in smoke and fire scene detection,caused by interfering factors such as illumination variations,fire dynamics,complex backgrounds,and excessively small targets,an improved YOLOv8s model named EE-YOLOv8s was proposed.The EE-YOLOv8s model integrated the MBConv-Block convolution module into the YOLOv8 Backbone and employed the EfficientNetEasy feature extraction network to refine image feature extraction while preserving a lightweight design.Additionally,the SPPELAN module was upgraded to SPP_LSKA_ELAN by incorporating the large separable kernel attention mechanism(LSKA),which captured spatial detail information in intricate and dynamic fire scenes,thereby distinguishing target objects from convoluted backgrounds.The Neck section introduced deformable convolution(DCN)and cross-space efficient multi-scale attention(EMA),implementing the C2f_DCN_EMA deformable convolution calibration module to enhance the adaptation to edge contour changes of fire and smoke targets,facilitating feature fusion and calibration,and emphasizing key target features.A small target detection head,equipped with the lightweight,parameter-free attention mechanism SimAM,was integrated into the Head section,and the channel configuration was refined to strengthen multi-size target characterization while minimizing redundancy and maximizing parameter utilization efficiency.Experimental results demonstrated that EE-YOLOv8s reduced the parameter count by 13.6%,while improving accuracy by 6.8%,recall by 7.3%,and mAP by 5.4%compared to the original model,ensuring rapid detection speed and superior detection performance for fire targets.

关 键 词:烟火目标检测 EfficientNetEasy主干网络 大型可分离核注意力机制 可变形卷积校准模块 小目标检测 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象