基于PP-PicoDet-XS的改进铝型材表面缺陷检测算法  

Improved Surface Defects Detection Algorithm for Aluminum Profiles Based on PP-PicoDet-XS

在线阅读下载全文

作  者:马淑华 李立振 秦汉民 沙晓鹏 MA Shu-hua;LI Li-zhen;QIN Han-min;SHA Xiao-peng(School of Control Engineering,Northeastern University at Qinhuangdao,Qinhuangdao 066004,China)

机构地区:[1]东北大学秦皇岛分校控制工程学院,河北秦皇岛066004

出  处:《东北大学学报(自然科学版)》2024年第11期1557-1564,共8页Journal of Northeastern University(Natural Science)

基  金:河北省自然科学基金资助项目(F2021501021)。

摘  要:铝型材在生产加工过程中会产生特征不明显和尺度大小不一等多类型的表面缺陷,针对现有人工抽检方法准确率低、实时性差、主观性强等问题,提出一种基于PP-PicoDet-XS的改进铝型材表面缺陷检测算法.改进的算法在主干网络中嵌入无参注意力SimAM,增强对深层有效特征的提取能力;使用SIoU(Scylla intersection over union)损失函数对训练过程进行优化,提高预测框的定位能力;采用量化蒸馏策略对模型进行压缩,提高推理速度.结果表明,改进的算法平均精度均值在交并比(intersection over union,IoU)阈值为0.5时达到了98.93%,在IoU阈值0.5~0.95范围内达到了57.60%,较未压缩的原始模型分别提高了1.73%和4.13%.将该算法部署到骁龙865移动端平台上进行推理,推理速度可达116.82帧/s,较未压缩的原始模型提高了47帧/s.During the production and processing of aluminum profiles,multiple types of surface defects such as unclear features and varying scales may generate.In response to the problems of low accuracy,poor real‑time performance,and strong subjectivity in existing manual sampling method,an improved surface defects detection algorithm is proposed for aluminum profiles based on PP-PicoDet-XS.The SimAM attention was embedded in the backbone to enhance the ability of extracting deep effective features.The SIoU(Scylla intersection over union)loss function is used to optimize the training process to improve the positioning ability of the prediction boxes.The quantization and distillation were used to compress the model to improve the inference speed.The results show that the improved algorithm achieves a mean average precision of 98.93%at intersection over union(IoU)threshold of 0.5,and 57.60%across IoU thresholds ranging from 0.5 to 0.95,which is 1.73%and 4.13%higher than the uncompressed original model.Deploying this algorithm on the Snapdragon 865 mobile platform for inference,the inference speed can reach 116.82 frames per second,which is 47 frames per second higher than the uncompressed original model.

关 键 词:铝型材 缺陷检测 SimAM 损失函数 量化 蒸馏 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象