检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王彩玲[1] 程叶 许欣黎 倪庆旭 WANG Cailing;CHENG Ye;XU Xinli;NI Qingxu(Xi'an Shiyou University)
出 处:《石油石化节能与计量》2025年第2期26-30,35,共6页Energy Conservation and Measurement in Petroleum & Petrochemical Industry
摘 要:石油作为中国重要的能源资源之一,广泛应用于发电、运输、工业生产等各个领域。准确的油储地罐容积表标定对于确保各类石油产品储存、运输和交易的精确计量至关重要。传统的标定方法通常高度依赖于静态测量和经验公式,易受时间、环境条件及人为因素的影响。为了解决这一问题,提出了一种基于高斯过程回归(GPR)和反向传播神经网络(BPNN)的标定验证方法。在真实加油站数据构建的数据集上进行实验,结果显示,高斯过程回归模型和BP神经网络模型的平均均方根误差RMSE分别为3.435、8.409,模型的预测效果相对较好,研究结果可为容积表的标定工作提供有价值的参考。As one of the important energy resources in China,petroleum is widely used in power generation,transportation,industrial production and other fields.The accurate tank volume gauge calibration is essential to ensure accurate measurement of the storage,transportation and trading of all types of petroleum products.The traditional calibration methods often rely highly on static measurements and empirical formulas,and it are susceptible to time,environmental conditions,and human factors.In order to solve this problem,the calibration verification method based on Gaussian process regression(GPR)and Back Propagation neural network(BPNN)are proposed.The experiments on the data set constructed from real gas station data show that the average RMSE of the Gaussian process regression model and the BP neural network model are 3.435 and 8.409 respectively,and the prediction effect of the model is relatively good,which makes research results can provide a valuable reference for the calibration of the volume.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117