检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:石桐赫 Shi Tonghe(Shanghai Jiao Tong University,Shanghai,200230)
机构地区:[1]上海交通大学,上海200230
出 处:《湖南警察学院学报》2024年第6期78-88,共11页Journal of Hunan Police Academy
摘 要:司法实践中对职业放贷人的识别,长期面临着“马甲”放贷与多地放贷难识别、职业放贷人识别标准不统一与僵化、识别职业放贷人的证据收集难等困境。上述困境源于我国现有职业放贷人的识别方法过分注重名录式管理。算法在整全性分析与精准预测等方面的显著优势,有助于解决职业放贷人识别中面临的上述问题。依据职业放贷人案件的判决书和公共数据集构建模型并训练神经网络,在风险预警与审判管理中为动态识别职业放贷人提供辅助,是运用算法构建职业放贷人司法识别辅助系统的具体路径。The identification of professional moneylenders in judicial practice has long been confronted with difficulties such as the difficulty in identifying"covert"lending and multi-jurisdictional lending,the inconsistency and rigidity of identification standards for professional moneylenders,and the challenge of collecting evidence for identification.These difficulties stem from the overemphasis on directory-based management in China's current identification methods for professional moneylenders.Algorithms,with their notable advantages in holistic analysis and precise prediction,can help address the aforementioned issues in identifying professional moneylenders.The specific approach to constructing an algorithmic auxiliary system for judicial identification of professional moneylenders involves building a model and training a neural network based on court verdicts related to professional moneylending cases and public datasets,thereby providing assistance for dynamic identification of professional moneylenders in risk early warning and trial management.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.190.158.76